Paleodictyon nodosum

Last updated

Paleodictyon nodosum
Temporal range: Eocene–Holocene
Trace fossil classification OOjs UI icon edit-ltr.svg
Ichnogenus: Paleodictyon
Ichnospecies: Paleodictyon nodosum
Seilacher, 1977

Paleodictyon nodosum is a living creature thought to produce a certain form of burrow nearly identical to Paleodictyon fossils. The modern burrows were found around mid-ocean ridge systems in the Pacific and Atlantic Oceans. Although scientists have collected many of the burrows of Paleodictyon nodosum, they have never seen a live one. What a live specimen would look like is widely debated, with the debate being split into two main sides.

Contents

Scientists ran various tests on the burrows of Paleodictyon and were unable to reach a single conclusion as to the form of Paleodictyon. The one thing that they can agree upon is that there are many markers that suggest that these forms are caused by a creature, and not by geological forces. [1]

Distribution/discovery

Paleodictyon nodosum burrows were originally photographed in 1976 on the Galapagos Rift between 2400–3700m depth. [2] Later, Seilacher and Rona used the deep-water submersible DSV Alvin to recover samples of the same form near the Mid-Atlantic Ridge. These samples were collected between 3430m and 3575m depth, around 26°N and 45°W. [1] These burrows were found in very similar conditions as the ones found along the Galapagos Rift. The biggest similarity between the habitats of all Paleodictyon nodosum is that they are all found along divergent plate boundaries at both active and extinct hydrothermal vents. [1]

Burrows

The burrows of Paleodictyon nodosum are one of the few things about them that scientists are actually able to study, and so this is possibly the area of which we know the most about Paleodictyon nodosum. The top of the form is shaped like a shield, with the center raised, and a lip around the outside. The center is raised approximately 5mm above the low points. Each horizontal section consists of three equidistant rows of tiny holes (approximately 1 mm in diameter) that connect at 120° angles. Each of these horizontal sections are connected by vertical shafts (approximately 2–3 mm in diameter). [1]

When actively being inhabited, the surface of the burrow is made of red metalliferous sediment. When it becomes inactive, this becomes covered with a light gray Lutite and the top flattens out. The red sediment is only found under the surface sediment in this environment, so its presence at the surface hints at a biotic factor which brings up the sediment. [1] The number of rows and the spacing of these rows increases in correlation with the size of the overall form. This indicates that these burrows are a result of organic growth. [1] The raised parts of the burrow force water to flow through the burrow. As a result of this, scientists found large numbers of foraminifera tests within the burrows. These were trapped in certain areas suggesting that the burrows were engineered to catch food as prey. [1] However, the microbial counts did not change from the inside of the burrows to the area surrounding it. [1]

Hypothesis 1 – trace fossil

The hypothesis supported by Seilacher, that the burrows we find are trace fossils of a worm-like animal, is supported by several features of the burrows, and is also not an unheard of concept in the animal kingdom. The shape of the burrows is consistent with other graphoglyptids. The burrows also had several exits, which is inconsistent with the idea of a "megalith" foraminifera.

A different animal that creates burrows, and cultivates food within those burrows, is the leafcutter ant. [3] This suggests that the idea of an animal cultivating its own food is not unreasonable, and the fact that the deep-ocean seafloor environment is so low in nutrition it seems like a logical evolutionary step to have been taken.

Hypothesis 2 – sponge / xenophyophore

The second hypothesis, supported by Rona, is that a sponge or megalith foraminifera such as a xenophyophore left the structures as a cast of its body. Through testing of collected burrow samples, this hypothesis gained a lot of evidence both for and against it.

One test that was run was watching how water flowed over the burrows. The forced water flow exhibited by these specimen was similar to the forced water flow in several sponges. [9] Another reason that this hypothesis seems likely is that best estimates of the size of the worm suggest that it would have to travel unreasonably long distances (compared to its body length) to fully navigate its burrows (103~104[ clarification needed ]).

However, there are several problems with this hypothesis as well: If this was the remains of the body of a creature, you would expect to find organic matter from that creature throughout the burrow. However, when the burrows were tested for DNA, scientists found DNA from different types of large protists between different burrows. This suggests that the DNA found is just there because it was transported there by currents. However, one encouraging fact is that one of the types of DNA found in a burrow was of Vanhoeffenella , which creates hexagonal burrows similar to those of P. nodosum. [1]

The barium content in the sediment making up the burrows had no significant difference from the barium content in the surrounding sediment. This is inconsistent with the burrows of other xenophyophores. Also the complexity and evenness of the burrows is not consistent with the forms that xenophyophores generally create.

Fossil record

The fossil record indicates that these burrow-types could be one of the earliest examples of complex structures being built by animals. [1]

Fossils of Paleodictyon nodosum were first found in the cliffs of Spain in the 1950s. [2] Since then, they have been discovered all over Europe and in Wales. They are generally found in flysch deposits from the Eocene epoch. [1] The oldest fossils show much less uniformly hexagonal burrows, but in higher strata (i.e. later in geological time) their burrows become much more consistent and precise. [2]

The IMAX film Volcanoes of the Deep Sea [2] describes the search for Paleodictyon nodosum, using the deep-water submersible DSV Alvin near volcanic vents that lie 3,500 meters (12,000 feet) underwater in the Mid-Atlantic Ridge. Samples were taken from several honeycomb burrows, however no creatures were found in any of them. They theorized that the burrows were being used for bacterial farming by whichever creature created them. [2]

Related Research Articles

<span class="mw-page-title-main">Trace fossil</span> Geological record of biological activity

A trace fossil, also known as an ichnofossil, is a fossil record of biological activity by lifeforms but not the preserved remains of the organism itself. Trace fossils contrast with body fossils, which are the fossilized remains of parts of organisms' bodies, usually altered by later chemical activity or mineralization. The study of such trace fossils is ichnology and is the work of ichnologists.

<span class="mw-page-title-main">Xenophyophorea</span> Clade of single-celled organisms

Xenophyophorea is a clade of foraminiferans. Xenophyophores are multinucleate unicellular organisms found on the ocean floor throughout the world's oceans, at depths of 500 to 10,600 metres. They are a kind of foraminiferan that extract minerals from their surroundings and use them to form an exoskeleton known as a test.

<span class="mw-page-title-main">Foraminifera</span> Phylum of amoeboid protists

Foraminifera are single-celled organisms, members of a phylum or class of Rhizarian protists characterized by streaming granular ectoplasm for catching food and other uses; and commonly an external shell of diverse forms and materials. Tests of chitin are believed to be the most primitive type. Most foraminifera are marine, the majority of which live on or within the seafloor sediment, while a smaller number float in the water column at various depths, which belong to the suborder Globigerinina. Fewer are known from freshwater or brackish conditions, and some very few (nonaquatic) soil species have been identified through molecular analysis of small subunit ribosomal DNA.

<span class="mw-page-title-main">Microfossil</span> Fossil that requires the use of a microscope to see it

A microfossil is a fossil that is generally between 0.001 mm and 1 mm in size, the visual study of which requires the use of light or electron microscopy. A fossil which can be studied with the naked eye or low-powered magnification, such as a hand lens, is referred to as a macrofossil.

<i>Gromia</i> Genus of protists

Gromia is a genus of protists, closely related to foraminifera, which inhabit marine and freshwater environments. It is the only genus of the family Gromiidae. Gromia are ameboid, producing filose pseudopodia that extend out from the cell's proteinaceous test through a gap enclosed by the cell's oral capsule. The test, a shell made up of protein that encloses the cytoplasm, is made up of several layers of membrane, which resemble honeycombs in shape – a defining character of this genus.

Volcanoes of the Deep Sea is a 2003 documentary film in the IMAX format about undersea volcanoes directed by Stephen Low.

<span class="mw-page-title-main">Vendobionta</span> Group of extinct creatures that were part of the Ediacaran biota

Vendobionts or Vendozoans (Vendobionta) are a proposed very high-level, extinct clade of benthic organisms that made up of the majority of the organisms that were part of the Ediacaran biota. It is a hypothetical group and at the same time, it would be the oldest of the animals that populated the Earth about 580 million years ago, in the Ediacaran period. They became extinct shortly after the so-called Cambrian explosion, with the introduction of fauna formed by more recognizable groups and more related to modern animals. It is very likely that the whole Ediacaran biota is not a monophyletic clade and not every genus placed in its subtaxa is an animal.

Trace fossils are classified in various ways for different purposes. Traces can be classified taxonomically, ethologically, and toponomically, that is, according to their relationship to the surrounding sedimentary layers. Except in the rare cases where the original maker of a trace fossil can be identified with confidence, phylogenetic classification of trace fossils is an unreasonable proposition.

<span class="mw-page-title-main">Adolf Seilacher</span> German paleontologist

Adolf "Dolf" Seilacher was a German palaeontologist who worked in evolutionary and ecological palaeobiology for over 60 years. He is best known for his contributions to the study of trace fossils; constructional morphology and structuralism; biostratinomy, Lagerstätten and the Ediacaran biota.

<i>Zoophycos</i> Trace fossil

Zoophycos is a somewhat cosmopolitan ichnogenus thought to be produced by moving and feeding polychaete worms.

<span class="mw-page-title-main">Ediacaran biota</span> Life of the Ediacaran period

The Ediacaranbiota is a taxonomic period classification that consists of all life forms that were present on Earth during the Ediacaran Period. These were enigmatic tubular and frond-shaped, mostly sessile, organisms. Trace fossils of these organisms have been found worldwide, and represent the earliest known complex multicellular organisms. The term "Ediacara biota" has received criticism from some scientists due to its alleged inconsistency, arbitrary exclusion of certain fossils, and inability to be precisely defined.

<i>Paleodictyon</i> Trace fossil

Paleodictyon is a trace fossil, usually interpreted to be a burrow, which appears in the geologic marine record beginning in the Precambrian/Early Cambrian and in modern ocean environments. Paleodictyon were first described by Giuseppe Meneghini in 1850. The origin of the trace fossil is enigmatic and numerous candidates have been proposed.

<span class="mw-page-title-main">Cambrian substrate revolution</span> Diversification of animal burrowing

The "Cambrian substrate revolution" or "Agronomic revolution", evidenced in trace fossils, is a sudden diversification of animal burrowing during the early Cambrian period.

<i>Syringammina</i> Genus of single-celled organisms

Syringammina is a xenophyophore found off the coast of Scotland, near Rockall. It is one of the largest single-celled organisms known, at up to 20 centimetres (8 in) across. It was first described in 1882 by the oceanographer John Murray, after being discovered on an expedition in the ship Triton which dredged the deep ocean bed off the west coast of Scotland in an effort to find organisms new to science. It was the first xenophyophore to be described and at first its relationship with other organisms was a mystery, but it is now considered to be a member of the Foraminifera.

Peter Arnold Rona was an American oceanographer. He was also a professor of Earth and planetary sciences at Rutgers University.

<span class="mw-page-title-main">Monothalamea</span> Taxonomic group of foraminifera

"Monothalamea" is a grouping of foraminiferans, traditionally consisting of all foraminifera with single-chambered tests. Recent work has shown that the grouping is paraphyletic, and as such does not constitute a natural group; nonetheless, the name "monothalamea" continues to be used by foraminifera workers out of convenience.

<i>Occultammina</i> Genus of single-celled organisms

Occultammina is a genus of xenophyophorean foraminifera known from the Atlantic and Pacific oceans. It is notable for being the first known infaunal xenophyophore as well as for being a possible identity for the enigmatic trace fossil Paleodictyon.

<span class="mw-page-title-main">Protist shell</span> Protective shell of a type of eukaryotic organism

Many protists have protective shells or tests, usually made from silica (glass) or calcium carbonate (chalk). Protists are a diverse group of eukaryote organisms that are not plants, animals, or fungi. They are typically microscopic unicellular organisms that live in water or moist environments.

<span class="mw-page-title-main">Foraminifera test</span> Shell of a particular type of protist

Foraminiferal tests are the tests of Foraminifera.

<span class="mw-page-title-main">Protists in the fossil record</span>

A protist is any eukaryotic organism that is not an animal, plant, or fungus. While it is likely that protists share a common ancestor, the last eukaryotic common ancestor, the exclusion of other eukaryotes means that protists do not form a natural group, or clade. Therefore, some protists may be more closely related to animals, plants, or fungi than they are to other protists. However, like algae, invertebrates and protozoans, the grouping is used for convenience.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 Rona, Peter; Seilacher, Adolf (2009). "Paleodictyon nodosum: A living fossil on the deep-sea floor". Deep-Sea Research Part II: Topical Studies in Oceanography. 56 (19–20): 1700–1712. Bibcode:2009DSR....56.1700R. doi:10.1016/j.dsr2.2009.05.015.
  2. 1 2 3 4 5 Low, Stephenn (director) (30 June 2011) [2003]. Volcanoes of the Deep Sea. Netflix (documentary). National Science Foundation.
  3. Hölldobler, Bert; Wilson, Edward O. (15 November 2010). The Leafcutter Ants: Civilization by Instinct (original ed.). W.W. Norton & Company. ISBN   978-039333868-3, ISBN   039333868-1.
  4. Boyajian; Labarbera (1987). "[no title cited]".{{cite journal}}: Cite journal requires |journal= (help)[ full citation needed ]
  5. Labarbera; Boyajian (1991). "[no title cited]".{{cite journal}}: Cite journal requires |journal= (help)[ full citation needed ]
  6. Labarbera (1993). "[no title cited]".{{cite journal}}: Cite journal requires |journal= (help)[ full citation needed ]
  7. Savarese (1992). "[no title cited]".{{cite journal}}: Cite journal requires |journal= (help)[ full citation needed ]
  8. Vogel (1977). "[no title cited]".{{cite journal}}: Cite journal requires |journal= (help)[ full citation needed ]
  9. Boyajian & Labarbera (1987); [4] Labarbera & Boyajian (1991); [5] Labarbera (1993); [6] Savarese (1992); [7] Vogel (1977) [8]