Pediococcus acidilactici

Last updated

Pediococcus acidilactici
Pediococcus acidilactici on TSA.jpg
Pediococcus acidilactici colonies on an MRS agar plate
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Species:
P. acidilactici
Binomial name
Pediococcus acidilactici
Lindner 1887

Pediococcus acidilactici is a species of Gram-positive cocci that is often found in pairs or tetrads. P. acidilactici is a homofermentative bacterium that can grow in a wide range of pH, temperature, and osmotic pressure, therefore being able to colonize the digestive tract. [1] It has emerged as a potential probiotic that has shown promising results in animal and human experiments, though some of the results are limited. They are commonly found in fermented vegetables, fermented dairy products, and meat. [2]

Contents

Pediococcus acidilactici is a facultative anaerobe that grows well on de Man, Rogosa, Sharpe agar of an optimum pH of 6.2, with an overnight incubation at 37 and 45 °C. It is also viable at higher temperatures up to 65 °C. [3]

This species is also acidophilic, viable at very low pH. The probiotic P. acidilactici is a facultative anaerobe with lesser sensitivity to oxygen. Pediococci exert antagonism against other microorganisms, including enteric pathogens, primarily through the production of lactic acid and secretion of bacteriocins known as pediocins. [4] [5]

Potential benefits

P. acidilactici has a wide range of potential benefits which are still being studied. Though it is being used as probiotic supplements in treating constipation, diarrhea, relieving stress, and enhancing immune response among birds and small animals, human trials are still limited. P. acidilactici is also known to prevent colonization of the small intestine by pathogens such as Shigella spp., Salmonella spp., Clostridium difficile , and Escherichia coli among small animals.

Digestive disorders

P. acidilactici has been used to treat dogs with digestive disorders and also those dogs which were infected by parvovirus. Prior to treatment with orally administered mixtures of P. acidilactici and Saccharomyces boulardii , the dogs diagnosed with parvovirus infection were shown to exhibit severe gastrointestinal distress such as vomiting and bloody diarrhea. After the treatment for three days, the bloody diarrhea ceased and the dogs had solid stools. [3]

Alternative medicine

P. acidilactici has not been stated in any literature to have toxic effects. Another potential benefit of using them as probiotics is their use as alternative medicines against infectious parasitic pathogens such as Eimeria in broiler chickens. [6] P. acidilactici in conjunction with S. boulardii stimulates humoral immune response to produce higher Eimeria-specific antibody levels while also reducing the number of oocysts shed by possible competitive inhibition and pediocin production, which inhibit pathogenic bacteria and other Gram-positive spoilage. [7] [8]

Immune health benefits

P. acidilactici can function as an immune modulator. [9] Animals fed with P. acidilactici have shown enhanced immune responses against infectious coccidioidal diseases. [10] [11]


Antibiotic treatment

Dogs typically undergo antibiotic treatment to eliminate infectious pathogens or parasites and to prevent secondary infections. However, the treatment with antibiotics can also disrupt the ecosystems of beneficial microorganisms in dog's gastrointestinal (GI) tract. When dogs with digestive disorders were treated by antibiotics together with P. acidilactici probiotic products, the surviving millions of bacteria are able to alleviate the disrupted balance of microorganisms in dogs’ GI tracts caused by antibiotics treatment and to normalize the intestinal microflora. [12]

Moreover, since antibiotics kill many of competitive pathogenic microorganisms, Pediococcus product can have better beneficial effects in dogs and cats' GI tracts when administered with antibiotics.

Difference from other probiotic strains

Most strains of Lactobacillus and Bifidobacterium are sensitive to room temperature, which raises concerns for storage conditions and maintenance of cell viability. In addition, most Lactobacillus and Bifidobacterium species are sensitive to acidic exposure and have difficulty surviving environments with low pH, such as stomach acid. [12] [11] Therefore, obtaining consistent and reproducible results becomes the major challenge for the commercial products of Lactobacillus and Bifidobacterium.

Related Research Articles

<i>Lactobacillus</i> Genus of bacteria

Lactobacillus is a genus of Gram-positive, aerotolerant anaerobes or microaerophilic, rod-shaped, non-spore-forming bacteria. Until 2020, the genus Lactobacillus comprised over 260 phylogenetically, ecologically, and metabolically diverse species; a taxonomic revision of the genus assigned lactobacilli to 25 genera.

<span class="mw-page-title-main">Probiotic</span> Microorganisms said to provide health benefits when consumed

Probiotics are live microorganisms promoted with claims that they provide health benefits when consumed, generally by improving or restoring the gut microbiota. Probiotics are considered generally safe to consume, but may cause bacteria-host interactions and unwanted side effects in rare cases. There is some evidence that probiotics are beneficial for some conditions, but there is little evidence for many of the health benefits claimed for them.

<i>Lactobacillus acidophilus</i> Species of bacterium

Lactobacillus acidophilus is a species of Gram-positive bacteria in the genus Lactobacillus. L. acidophilus is a homofermentative, microaerophilic species that ferments sugars into lactic acid. Lactic acid helps prevent the drop of pH which aids in L. acidophilus' growth. This species grows readily at low pH and has an optimum growth temperature of around 37 °C (99 °F). L. acidophilus is found in the human and animal gastrointestinal tract and mouth. Some strains of L. acidophilus may be considered to have probiotic characteristics. These strains are commercially used in many dairy products, sometimes together with Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in the production of acidophilus-type yogurt, or acidophiline. Its genome has been sequenced.

<i>Bacillus coagulans</i> Species of bacterium

Bacillus coagulans is a lactic acid–forming bacterial species first isolated and described in 1915 by B.W. Hammer at the Iowa Agricultural Experiment Station as a cause of an outbreak of coagulation in evaporated milk packed by an Iowa condensary. Separately isolated in 1935 and described as Lactobacillus sporogenes in the fifth edition of Bergey's Manual of Systematic Bacteriology, it exhibits characteristics typical of both genera Lactobacillus and Bacillus; its taxonomic position between the families Lactobacillaceae and Bacillaceae was often debated. However, in the seventh edition of Bergey's, it was finally transferred to the genus Bacillus. DNA-based technology was used in distinguishing between the two genera of bacteria, which are morphologically similar and possess similar physiological and biochemical characteristics.

<i>Lacticaseibacillus casei</i> Species of bacterium

Lacticaseibacillus caseiis an organism that belongs to the largest genus in the family Lactobacillaceae, a lactic acid bacteria (LAB), that was previously classified as Lactobacillus casei-01. This bacteria has been identified as facultatively anaerobic or microaerophilic, acid-tolerant, non-spore-forming bacteria. The taxonomy of this group has been debated for several years because researchers struggled to differentiate between the strains of L. casei and L. paracasei. It has recently been accepted as a single species with five subspecies: L. casei subsp. rhamnosus, L. casei subsp. alactosus, L. casei subsp. casei, L. casei subsp. tolerans, and L. casei subsp. pseudoplantarum. The taxonomy of this genus was determined according to the phenotypic, physiological, and biochemical similarities.

<span class="mw-page-title-main">Lactic acid bacteria</span> Order of bacteria

Lactobacillales are an order of gram-positive, low-GC, acid-tolerant, generally nonsporulating, nonrespiring, either rod-shaped (bacilli) or spherical (cocci) bacteria that share common metabolic and physiological characteristics. These bacteria, usually found in decomposing plants and milk products, produce lactic acid as the major metabolic end product of carbohydrate fermentation, giving them the common name lactic acid bacteria (LAB).

Natural growth promoters (NGPs) are feed additives for farm animals.

Limosilactobacillus reuteri is a lactic acid bacterium found in a variety of natural environments, including the gastrointestinal tract of humans and other animals. It does not appear to be pathogenic and may have health effects.

<span class="mw-page-title-main">Food microbiology</span> Study of the microorganisms that inhibit, create, or contaminate food

Food microbiology is the study of the microorganisms that inhabit, create, or contaminate food. This includes the study of microorganisms causing food spoilage; pathogens that may cause disease ; microbes used to produce fermented foods such as cheese, yogurt, bread, beer, and wine; and microbes with other useful roles, such as producing probiotics.

<i>Streptococcus thermophilus</i> Species of bacterium

Streptococcus thermophilus also known as Streptococcus salivarius subsp. thermophilus is a gram-positive bacterium, and a fermentative facultative anaerobe, of the viridans group. It tests negative for cytochrome, oxidase, and catalase, and positive for alpha-hemolytic activity. It is non-motile and does not form endospores. S. thermophilus is fimbriated.

Levilactobacillus brevis is a gram-positive, rod shaped species of lactic acid bacteria which is heterofermentative, creating CO2, lactic acid and acetic acid or ethanol during fermentation. L. brevis is the type species of the genus Levilactobacillus (previously L. brevis group), which comprises 24 species (http://www.lactobacillus.ualberta.ca/, http://www.lactobacillus.uantwerpen.be/). It can be found in many different environments, such as fermented foods, and as normal microbiota. L.brevis is found in food such as sauerkraut and pickles. It is also one of the most common causes of beer spoilage. Ingestion has been shown to improve human immune function, and it has been patented several times. Normal gut microbiota L.brevis is found in human intestines, vagina, and feces.

<span class="mw-page-title-main">Vaginal flora</span> Microorganisms present in the vagina

Vaginal flora, vaginal microbiota or vaginal microbiome are the microorganisms that colonize the vagina. They were discovered by the German gynecologist Albert Döderlein in 1892 and are part of the overall human flora. The amount and type of bacteria present have significant implications for an individual's overall health. The primary colonizing bacteria of a healthy individual are of the genus Lactobacillus, such as L. crispatus, and the lactic acid they produce is thought to protect against infection by pathogenic species.

Limosilactobacillus fermentum is a Gram-positive species in the heterofermentative genus Limosilactobacillus. It is associated with active dental caries lesions. It is also commonly found in fermenting animal and plant material including sourdough and cocoa fermentation. A few strains are considered probiotic or "friendly" bacteria in animals and at least one strain has been applied to treat urogenital infections in women. Some strains of lactobacilli formerly mistakenly classified as L. fermentum have since been reclassified as Limosilactobacillus reuteri. Commercialized strains of L. fermentum used as probiotics include PCC, ME-3 and CECT5716

<span class="mw-page-title-main">Class II bacteriocin</span>

Class II bacteriocins are a class of small peptides that inhibit the growth of various bacteria.

Sakacins are bacteriocins produced by Lactobacillus sakei. They are often clustered with the other lactic acid bacteriocins. The best known sakacins are sakacin A, G, K, P, and Q. In particular, sakacin A and P have been well characterized.

<span class="mw-page-title-main">Biopreservation</span>

Biopreservation is the use of natural or controlled microbiota or antimicrobials as a way of preserving food and extending its shelf life. The biopreservation of food, especially utilizing lactic acid bacteria (LAB) that are inhibitory to food spoilage microbes, has been practiced since early ages, at first unconsciously but eventually with an increasingly robust scientific foundation. Beneficial bacteria or the fermentation products produced by these bacteria are used in biopreservation to control spoilage and render pathogens inactive in food. There are a various modes of action through which microorganisms can interfere with the growth of others such as organic acid production, resulting in a reduction of pH and the antimicrobial activity of the un-dissociated acid molecules, a wide variety of small inhibitory molecules including hydrogen peroxide, etc. It is a benign ecological approach which is gaining increasing attention.

Limosilactobacillus pontis is a rod-shaped, Gram-positive facultatively anaerobic bacterium. Along with other Lactobacillus species, it is capable of converting sugars, such as lactose, into lactic acid. Limosilactobacillus pontis is classified under the phylum Bacillota, class Bacilli, and is a member of the family Lactobacillaceae and is found to be responsible for the fermentation of sourdough, along with many other Lactobacillus species. This microorganism produces lactic acid during the process of fermentation, which gives sourdough bread its characteristic sour taste.

<i>Lactobacillus bulgaricus</i> GLB44 Subspecies of bacterium

Lactobacillus delbrueckii subsp. bulgaricus is a bacterial subspecies traditionally isolated from European yogurts. Lactobacillus bulgaricusGLB44 differs from the rest of the L. bulgaricus strains as it was isolated from the leaves of Galanthus nivalis in Bulgaria, becoming the only known strain of this subspecies that has vegan origin available as a commercial probiotic. Probiotics are health promoting bacteria which, when consumed in adequate amounts, confer a benefit on the host, normally associated with positive effects on the digestive and immune systems, and are usually prescribed during or after antibiotic treatment to alleviate the symptoms of antibiotic-associated diarrhea. Probiotics are also associated with decreasing of the risk of traveler's diarrhea.

Proteobiotics are natural metabolites which are produced by fermentation process of specific probiotic strains. These small oligopeptides were originally discovered in and isolated from culture media used to grow probiotic bacteria and may account for some of the health benefits of probiotics.

Postbiotics - also known as metabiotics, biogenics, or simply metabolites - are soluble factors, secreted by live bacteria, or released after bacterial lysis providing physiological benefits to the host.

References

  1. Klaenhammer T.R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12 :39S-85S
  2. Barros R.R., Carvalho G.S., Peralta J.M., Facklam R.R., Teixeira L.M. 2001. Phenotypic and genotypic characterization of Pediococcus strains isolated from human clinical sources. J. Clin Microbiol. April;39(4): 1241–1246.
  3. 1 2 Lin J.J. 2006. Probiotics as alternative Biomedicines for pets with digestive disorders
  4. Daeschel M.A., Klaenhaemmer T.R. 1985. Association of a 13.6-megadalton plasmid in Pediococcus pentosaceus with bacteriocin activity. Appl. Environ. Microbiol. 50: 1538S-1541S
  5. Zhu, Liyan; Zeng, Jianwei; Wang, Chang; Wang, Jiawei (2022-02-08). "Structural Basis of Pore Formation in the Mannose Phosphotransferase System by Pediocin PA-1". Applied and Environmental Microbiology. 88 (3): e0199221. doi:10.1128/AEM.01992-21. ISSN   1098-5336. PMC   8824269 . PMID   34851716.
  6. Dalloul R.A., Lillehoj H.S, Lee J.S., Lee S.H., Chung K.S. 2006. Immunopotentiating effect of a Fomitella fraxinea – derived lectin on chicken immunity and resistance to coccidiosis. Poult. Sci. 85: 446S-451S
  7. Ennahar S., Deschamps N. 2000. Anti-Listeria effect of enoterocin A, produced by cheese-isolated Enterococcus faecium EFM01, relative to other bacteriocins from lactic acid bacteria. J.Appl. Microbiol. 88:449S-457S
  8. Lee SH, Lillehoj HS, Dalloul RA, Park DW, Hong YH, and Lin JJ. 2007. Influence of Pediococcus –based probiotic on coccidiosis in broiler chickens. Poultry Sci. 86:63-66
  9. Jha, Rajesh; Das, Razib; Oak, Sophia; Mishra, Pravin (2020). "Probiotics (Direct-Fed Microbials) in Poultry Nutrition and Their Effects on Nutrient Utilization, Growth and Laying Performance, and Gut Health: A Systematic Review". Animals. 10 (10): 1863. doi: 10.3390/ani10101863 . PMC   7602066 . PMID   33066185.
  10. Lee SH, Lillehoj HS, Park DW, Hong YH, and Lin JJ. 2007. Effects of Pediococcus –and Saccharomyces -based probiotic (MitoMax) on coccidiosis in broiler chickens. Comparative Immuno Microbiol & Infectious disease. 30:261-268
  11. 1 2 Lin J.J. 2006. Probiotics as alternative Biomedicines for pets with digestive disorders. Proceeding of 8th Annual meeting of JBVP. 3-288-292.
  12. 1 2 Mizutani W., Yamasaki R, Lin, JJ, Kuki M, and Kato G. 2007. Pediococcus-an[sic] unique probiotics we use as a novel GI supplement. Annual Meeting of JBVP. 3-269-3-272