Phenylalanine/tyrosine ammonia-lyase

Last updated
Phenylalanine/tyrosine ammonia-lyase
Identifiers
EC no. 4.3.1.25
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Phenylalanine/tyrosine ammonia-lyase (EC 4.3.1.25, PTAL, bifunctional PAL) is an enzyme with systematic name L-phenylalanine(or L-tyrosine):trans-cinnamate(or trans-p-hydroxycinnamate) ammonia-lyase. [1] [2] [3] [4] [5] This enzyme catalyses the following chemical reaction

(1) L-phenylalanine trans-cinnamate + NH3
(2) L- tyrosine trans-p-hydroxycinnamate + NH3

This enzyme is a member of the aromatic amino acid lyase family.

Related Research Articles

<span class="mw-page-title-main">Chymotrypsin</span> Digestive enzyme

Chymotrypsin (EC 3.4.21.1, chymotrypsins A and B, alpha-chymar ophth, avazyme, chymar, chymotest, enzeon, quimar, quimotrase, alpha-chymar, alpha-chymotrypsin A, alpha-chymotrypsin) is a digestive enzyme component of pancreatic juice acting in the duodenum, where it performs proteolysis, the breakdown of proteins and polypeptides. Chymotrypsin preferentially cleaves peptide amide bonds where the side chain of the amino acid N-terminal to the scissile amide bond (the P1 position) is a large hydrophobic amino acid (tyrosine, tryptophan, and phenylalanine). These amino acids contain an aromatic ring in their side chain that fits into a hydrophobic pocket (the S1 position) of the enzyme. It is activated in the presence of trypsin. The hydrophobic and shape complementarity between the peptide substrate P1 side chain and the enzyme S1 binding cavity accounts for the substrate specificity of this enzyme. Chymotrypsin also hydrolyzes other amide bonds in peptides at slower rates, particularly those containing leucine at the P1 position.

<span class="mw-page-title-main">Tyrosine</span> Amino acid

L-Tyrosine or tyrosine or 4-hydroxyphenylalanine is one of the 20 standard amino acids that are used by cells to synthesize proteins. It is a non-essential amino acid with a polar side group. The word "tyrosine" is from the Greek tyrós, meaning cheese, as it was first discovered in 1846 by German chemist Justus von Liebig in the protein casein from cheese. It is called tyrosyl when referred to as a functional group or side chain. While tyrosine is generally classified as a hydrophobic amino acid, it is more hydrophilic than phenylalanine. It is encoded by the codons UAC and UAU in messenger RNA.

Shikimic acid, more commonly known as its anionic form shikimate, is a cyclohexene, a cyclitol and a cyclohexanecarboxylic acid. It is an important biochemical metabolite in plants and microorganisms. Its name comes from the Japanese flower shikimi, from which it was first isolated in 1885 by Johan Fredrik Eykman. The elucidation of its structure was made nearly 50 years later.

<span class="mw-page-title-main">Apigenin</span> Chemical compound

Apigenin (4′,5,7-trihydroxyflavone), found in many plants, is a natural product belonging to the flavone class that is the aglycone of several naturally occurring glycosides. It is a yellow crystalline solid that has been used to dye wool.

<span class="mw-page-title-main">Phenylpropanoid</span>

The phenylpropanoids are a diverse family of organic compounds that are synthesized by plants from the amino acids phenylalanine and tyrosine. Their name is derived from the six-carbon, aromatic phenyl group and the three-carbon propene tail of coumaric acid, which is the central intermediate in phenylpropanoid biosynthesis. From 4-coumaroyl-CoA emanates the biosynthesis of myriad natural products including lignols, flavonoids, isoflavonoids, coumarins, aurones, stilbenes, catechin, and phenylpropanoids. The coumaroyl component is produced from cinnamic acid.

<span class="mw-page-title-main">Tryptophan hydroxylase</span> Class of enzymes

Tryptophan hydroxylase (TPH) is an enzyme (EC 1.14.16.4) involved in the synthesis of the monoamine neurotransmitter serotonin. Tyrosine hydroxylase, phenylalanine hydroxylase, and tryptophan hydroxylase together constitute the family of biopterin-dependent aromatic amino acid hydroxylases. TPH catalyzes the following chemical reaction

In enzymology, a trans-cinnamate 2-monooxygenase (EC 1.14.13.14) is an enzyme that catalyzes the chemical reaction

In enzymology, a dihydroxyphenylalanine ammonia-lyase (EC 4.3.1.11, entry deleted) is a non-existing enzyme that catalyzes the chemical reaction

In enzymology, a formimidoyltetrahydrofolate cyclodeaminase (EC 4.3.1.4) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Methionine gamma-lyase</span>

The enzyme methionine γ-lyase (EC 4.4.1.11, MGL) is in the γ-family of PLP-dependent enzymes. It degrades sulfur-containing amino acids to α-keto acids, ammonia, and thiols:

<span class="mw-page-title-main">Phenylalanine ammonia-lyase</span>

The enzyme phenylalanine ammonia lyase (EC 4.3.1.24) catalyzes the conversion of L-phenylalanine to ammonia and trans-cinnamic acid.:

<span class="mw-page-title-main">Anthranilate synthase</span>

The enzyme anthranilate synthase catalyzes the chemical reaction

<span class="mw-page-title-main">Phenylalanine decarboxylase</span>

The enzyme phenylalanine decarboxylase (EC 4.1.1.53) catalyzes the chemical reaction

<span class="mw-page-title-main">3-dehydroquinate dehydratase</span> Class of enzymes

The enzyme 3-dehydroquinate dehydratase (EC 4.2.1.10) catalyzes the chemical reaction

<span class="mw-page-title-main">Chorismate synthase</span>

The enzyme chorismate synthase catalyzes the chemical reaction

In enzymology, an aromatic-amino-acid transaminase is an enzyme that catalyzes the chemical reaction

In enzymology, glutamate-prephenate aminotransferase is an enzyme that catalyzes the chemical reaction

The biosynthesis of phenylpropanoids involves a number of enzymes.

<span class="mw-page-title-main">Tyrosine ammonia-lyase</span>

Tyrosine ammonia lyase (EC 4.3.1.23, L-tyrosine ammonia-lyase, TAL or Tyrase) is an enzyme in the natural phenols biosynthesis pathway. It transforms L-tyrosine into p-coumaric acid.

Aralkylamine dehydrogenase (azurin) (EC 1.4.9.2, aromatic amine dehydrogenase, arylamine dehydrogenase, tyramine dehydrogenase) is an enzyme with the systematic name aralkylamine:azurin oxidoreductase (deaminating). This enzyme catalyses the following chemical reaction:

References

  1. Rösler J, Krekel F, Amrhein N, Schmid J (January 1997). "Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity". Plant Physiology. 113 (1): 175–9. doi:10.1104/pp.113.1.175. PMC   158128 . PMID   9008393.
  2. Watts KT, Mijts BN, Lee PC, Manning AJ, Schmidt-Dannert C (December 2006). "Discovery of a substrate selectivity switch in tyrosine ammonia-lyase, a member of the aromatic amino acid lyase family". Chemistry & Biology. 13 (12): 1317–26. doi:10.1016/j.chembiol.2006.10.008. PMID   17185227.
  3. Louie GV, Bowman ME, Moffitt MC, Baiga TJ, Moore BS, Noel JP (December 2006). "Structural determinants and modulation of substrate specificity in phenylalanine-tyrosine ammonia-lyases". Chemistry & Biology. 13 (12): 1327–38. doi:10.1016/j.chembiol.2006.11.011. PMC   2859959 . PMID   17185228.
  4. Schwede TF, Rétey J, Schulz GE (April 1999). "Crystal structure of histidine ammonia-lyase revealing a novel polypeptide modification as the catalytic electrophile". Biochemistry. 38 (17): 5355–61. doi:10.1021/bi982929q. PMID   10220322.
  5. Barros J, Serrani-Yarce JC, Chen F, Baxter D, Venables BJ, Dixon RA (May 2016). "Role of bifunctional ammonia-lyase in grass cell wall biosynthesis". Nature Plants. 2 (6): 16050. doi:10.1038/nplants.2016.50. PMID   27255834.