Phenylarsonic acid

Last updated
Phenylarsonic acid
Stereo structural formula of phenylarsonic acid PhAsO3H2.png
Stereo structural formula of phenylarsonic acid
Phenylarsonic acid molecule ball.png
Names
Preferred IUPAC name
Phenylarsonic acid
Other names
Benzenearsonic acid
Identifiers
3D model (JSmol)
AbbreviationsPAA
2935741
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.002.393 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 202-631-9
131185
MeSH Benzenearsonic+acid
PubChem CID
RTECS number
  • CY3150000
UNII
UN number 1557
  • InChI=1S/C6H7AsO3/c8-7(9,10)6-4-2-1-3-5-6/h1-5H,(H2,8,9,10) Yes check.svgY
    Key: LVKZSFMYNWRPJX-UHFFFAOYSA-N Yes check.svgY
  • O[As](O)(=O)C1=CC=CC=C1
Properties
C6H7AsO3
Molar mass 202.041 g·mol−1
AppearanceColourless solid
Density 1.76 g cm−3
Melting point 154 to 158 °C (309 to 316 °F; 427 to 431 K)
low
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Toxic
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Phenylarsonic acid is the chemical compound with the formula C6H5AsO(OH)2, commonly abbreviated PhAsO3H2. This colourless solid is an organic derivative of arsenic acid, AsO(OH)3, where one OH group has been replaced by a phenyl group. The compound is a buffering agent and a precursor to other organoarsenic compounds, some of which are used in animal nutrition, e.g. 4-hydroxy-3-nitrobenzenearsonic acid.

Contents

Preparation and structure

PhAsO3H2 can be prepared in several routes, but a common one entails treatment of phenyl diazonium salts with sodium arsenite (prepared from arsenious acid and base) in the presence of a copper(II) catalyst. [1]

C
6
H
5
N+
2
+ NaAsO3H2 → C6H5AsO3H2 + Na+ + N2

Related derivatives are prepared similarly. [2] It was first prepared by Michaelis and Loenser. [3] [4] [5] X-ray crystallography indicates that the molecules are connected by hydrogen-bonds consistent with short distance of 2.5 Å separating the oxygen atoms. The arsenic center is tetrahedral. [6]

Several derivatives of phenylarsonic acid have been used as additives for animal feeds. These include 4-hydroxy-3-nitrobenzenearsonic acid (3-NHPAA, or Roxarsone), p-arsanilic acid (p-ASA), 4-nitrophenylarsonic acid (4-NPAA), and p-ureidophenylarsonic acid (p-UPAA).

Related Research Articles

<span class="mw-page-title-main">Phenols</span> Chemical compounds in which hydroxyl group is attached directly to an aromatic ring

In organic chemistry, phenols, sometimes called phenolics, are a class of chemical compounds consisting of one or more hydroxyl groups (—OH) bonded directly to an aromatic hydrocarbon group. The simplest is phenol, C
6
H
5
OH
. Phenolic compounds are classified as simple phenols or polyphenols based on the number of phenol units in the molecule.

<span class="mw-page-title-main">Pinner reaction</span> Reaction of cyanide and alcohol to give imino ester salt

The Pinner reaction refers to the acid catalysed reaction of a nitrile with an alcohol to form an imino ester salt ; this is sometimes referred to as a Pinner salt. The reaction is named after Adolf Pinner, who first described it in 1877. Pinner salts are themselves reactive and undergo additional nucleophilic additions to give various useful products:

Pyrrole is a heterocyclic aromatic organic compound, a five-membered ring with the formula C4H4NH. It is a colorless volatile liquid that darkens readily upon exposure to air. Substituted derivatives are also called pyrroles, e.g., N-methylpyrrole, C4H4NCH3. Porphobilinogen, a trisubstituted pyrrole, is the biosynthetic precursor to many natural products such as heme.

<span class="mw-page-title-main">Dimethylaniline</span> Chemical compound

N,N-Dimethylaniline (DMA) is an organic chemical compound, a substituted derivative of aniline. It consists of a tertiary amine, featuring dimethylamino group attached to a phenyl group. This oily liquid is colourless when pure, but commercial samples are often yellow. It is an important precursor to dyes such as crystal violet.

Furfural is an organic compound with the formula C4H3OCHO. It is a colorless liquid, although commercial samples are often brown. It has an aldehyde group attached to the 2-position of furan. It is a product of the dehydration of sugars, as occurs in a variety of agricultural byproducts, including corncobs, oat, wheat bran, and sawdust. The name furfural comes from the Latin word furfur, meaning bran, referring to its usual source. Furfural is only derived from lignocellulosic biomass, i.e., its origin is non-food or non-coal/oil based. Aside from ethanol, acetic acid, and sugar, it is one of the oldest renewable chemicals. It is also found in many processed foods and beverages.

The Hofmann rearrangement is the organic reaction of a primary amide to a primary amine with one fewer carbon atom. The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate. The reaction can form a wide range of products, including alkyl and aryl amines.

The Ullmann condensation or Ullmann-type reaction is the copper-promoted conversion of aryl halides to aryl ethers, aryl thioethers, aryl nitriles, and aryl amines. These reactions are examples of cross-coupling reactions.

<span class="mw-page-title-main">Reimer–Tiemann reaction</span>

The Reimer–Tiemann reaction is a chemical reaction used for the ortho-formylation of phenols; with the simplest example being the conversion of phenol to salicylaldehyde. The reaction was discovered by Karl Reimer and Ferdinand Tiemann. The Reimer in question was Karl Reimer (1845-1883) not the lesser known Carl Ludwig Reimer (1856-1921).

<span class="mw-page-title-main">Mandelic acid</span> Chemical compound

Mandelic acid is an aromatic alpha hydroxy acid with the molecular formula C6H5CH(OH)CO2H. It is a white crystalline solid that is soluble in water and polar organic solvents. It is a useful precursor to various drugs. The molecule is chiral. The racemic mixture is known as paramandelic acid.

<span class="mw-page-title-main">Diphenylchlorarsine</span> Chemical compound

Diphenylchloroarsine (DA) is the organoarsenic compound with the formula (C6H5)2AsCl. It is highly toxic and was once used in chemical warfare. It is also an intermediate in the preparation of other organoarsenic compounds. The molecule consists of a pyramidal As(III) center attached to two phenyl rings and one chloride. It was also known as sneezing oil during World War I by the Allies.

<span class="mw-page-title-main">Triphenylmethanol</span> Chemical compound

Triphenylmethanol is an organic compound. It is a white crystalline solid that is insoluble in water and petroleum ether, but well soluble in ethanol, diethyl ether, and benzene. In strongly acidic solutions, it produces an intensely yellow color, due to the formation of a stable "trityl" carbocation. Many derivatives of triphenylmethanol are important dyes.

<span class="mw-page-title-main">Organomercury</span> Group of chemical compounds containing mercury

Organomercury refers to the group of organometallic compounds that contain mercury. Typically the Hg–C bond is stable toward air and moisture but sensitive to light. Important organomercury compounds are the methylmercury(II) cation, CH3Hg+; ethylmercury(II) cation, C2H5Hg+; dimethylmercury, (CH3)2Hg, diethylmercury and merbromin ("Mercurochrome"). Thiomersal is used as a preservative for vaccines and intravenous drugs.

<span class="mw-page-title-main">Dimethyl acetylenedicarboxylate</span> Chemical compound

Dimethyl acetylenedicarboxylate (DMAD) is an organic compound with the formula CH3O2CC2CO2CH3. It is a di-ester in which the ester groups are conjugated with a C-C triple bond. As such, the molecule is highly electrophilic, and is widely employed as a dienophile in cycloaddition reactions, such as the Diels-Alder reaction. It is also a potent Michael acceptor. This compound exists as a colorless liquid at room temperature. This compound was used in the preparation of nedocromil.

<span class="mw-page-title-main">Triphenylstibine</span> Chemical compound

Triphenylstibine is the chemical compound with the formula Sb(C6H5)3. Abbreviated SbPh3, this colourless solid is often considered the prototypical organoantimony compound. It is used as a ligand in coordination chemistry and as a reagent in organic synthesis.

<span class="mw-page-title-main">Erlenmeyer–Plöchl azlactone and amino-acid synthesis</span>

The Erlenmeyer–Plöchl azlactone and amino acid synthesis, named after Friedrich Gustav Carl Emil Erlenmeyer who partly discovered the reaction, is a series of chemical reactions which transform an N-acyl glycine to various other amino acids via an oxazolone.

The Schotten–Baumann reaction is a method to synthesize amides from amines and acid chlorides:

The Glaser coupling is a type of coupling reaction. It is by far the oldest acetylenic coupling and is based on cuprous salts like copper(I) chloride or copper(I) bromide and an additional oxidant like oxygen. The base in its original scope is ammonia. The solvent is water or an alcohol. The reaction was first reported by Carl Andreas Glaser in 1869. He suggested the following process for his way to diphenylbutadiyne:

The Dimroth rearrangement is a rearrangement reaction taking place with certain 1,2,3-triazoles where endocyclic and exocyclic nitrogen atoms switch place. This organic reaction was discovered in 1909 by Otto Dimroth.

<span class="mw-page-title-main">Michler's ketone</span> Chemical compound

Michler's ketone is an organic compound with the formula of [(CH3)2NC6H4]2CO. This electron-rich derivative of benzophenone is an intermediate in the production of dyes and pigments, for example Methyl violet. It is also used as a photosensitizer. It is named after the German chemist Wilhelm Michler.

<span class="mw-page-title-main">Methylarsonic acid</span> Chemical compound

Methylarsonic acid is an organoarsenic compound with the formula CH3AsO3H2. It is a colorless, water-soluble solid. Salts of this compound, e.g. disodium methyl arsonate, have been widely used in as herbicides and fungicides in growing cotton and rice.

References

  1. Bullard, R. H.; Dickey, J. B. "Phenylarsonic Acid" Organic Syntheses, Collected Volume 2, pages 494 (1943). http://www.orgsyn.org/orgsyn/pdfs/CV2P0494.pdf
  2. Ruddy, A. W.; Starkey, E. B. "p-Nitrophenylarsonic Acid" Organic Syntheses, Collected Volume 3, pp. 665 (1955). "Archived copy" (PDF). Archived from the original (PDF) on 2007-09-30. Retrieved 2007-04-19.{{cite web}}: CS1 maint: archived copy as title (link)
  3. A. Michaelis; H. Loesner (1877). "Ueber nitrirte Phenylarsenverbindungen". Berichte der Deutschen Chemischen Gesellschaft. 27: 263–272. doi:10.1002/cber.18940270151.
  4. A. Michaelis (1875). "Ueber aromatische Arsenverbindungen". Berichte der Deutschen Chemischen Gesellschaft. 8 (2): 1316–1317. doi:10.1002/cber.187500802125.
  5. A. Michaelis; W. La Coste; A. Michaelis (1880). "Ueber die Verbindungen der Elemente der Stickstoffgruppe mit den Radicalen der aromatischen Reihe. Dritte Abhandlung: Ueber aromatische Arsenverbindungen". Annalen der Chemie. 201 (2–3): 184–261. doi:10.1002/jlac.18802010204.
  6. Struchkov, Yu. T. "Crystal and molecular structure of phenylarsonic acid" Russian Chemical Bulletin 1960, Volume 9, 1829-1833. doi : 10.1007/BF00907739