Playfairite

Last updated
Playfairite
Playfairite.jpg
General
Category Sulfosalt minerals, Sulfides
Formula
(repeating unit)
Pb16Sb18S43
IMA symbol Pyf [1]
Strunz classification 2.LB.30 (10 ed)
2/E.20-40 (8 ed)
Dana classification 3.6.4.1
Crystal system Monoclinic
Unknown space group
Identification
ColorLead gray to black
Cleavage Perfect
Mohs scale hardness3.5-4
Luster Metallic
Streak Black
Specific gravity 5.72
Pleochroism Strong reflection
References [2]

Playfairite is a rare sulfosalt mineral with chemical formula Pb16Sb18S43 in the monoclinic crystal system, [3] [4] named after the Scottish scientist and mathematician John Playfair. [5] It was discovered in 1966 by the Canadian mineralogist John Leslie Jambor. [2] [6] [7] Lead gray to black in color, its luster is metallic. Playfairite shows strong reflection pleochroism from white to brownish gray. Playfairite has a hardness of 3.5 to 4 on Mohs scale and a specific gravity of approximately 5.72. [3]

The type locality is Taylor Pit (Concession XIV; Lot 13), Huntingdon Township, Hastings County in Ontario, Canada. [3] Small deposits have also been found in Les Cougnasses Mine, Orpierre in the Haut-Alpes in France, Khaidarkan Sb-Hg deposit (Chaidarkan), Fergana Valley, Alai Range, Osh Oblast, Kyrgyzstan and Reese River District, Lander County, Nevada, USA. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Mimetite</span> Lead arsenate chloride mineral

Mimetite is a lead arsenate chloride mineral (Pb5(AsO4)3Cl) which forms as a secondary mineral in lead deposits, usually by the oxidation of galena and arsenopyrite. The name derives from the Greek Μιμητής mimetes, meaning "imitator" and refers to mimetite's resemblance to the mineral pyromorphite. This resemblance is not coincidental, as mimetite forms a mineral series with pyromorphite (Pb5(PO4)3Cl) and with vanadinite (Pb5(VO4)3Cl). Notable occurrences are Mapimi, Durango, Mexico and Tsumeb, Namibia.

<span class="mw-page-title-main">Sperrylite</span>

Sperrylite is a platinum arsenide mineral with the chemical formula PtAs2 and is an opaque metallic tin white mineral which crystallizes in the isometric system with the pyrite group structure. It forms cubic, octahedral or pyritohedral crystals in addition to massive and reniform habits. It has a Mohs hardness of 6–7 and a very high specific gravity of 10.6.

<span class="mw-page-title-main">Baumhauerite</span>

Baumhauerite (Pb3As4S9) is a rare lead sulfosalt mineral. It crystallizes in the triclinic system, is gray-black to blue-gray and its lustre is metallic to dull. Baumhauerite has a hardness of 3.

<span class="mw-page-title-main">Kampfite</span> Phyllosilicate mineral

Kampfite is a rare barium silicate–carbonate–halide mineral with the chemical formula Ba12(Si11Al5)O31(CO3)8Cl5. Discovered in 1964 and described in 2001, it is named after Anthony R. Kampf. The mineral is known only from Fresno County, California.

<span class="mw-page-title-main">Duftite</span> Arsenate mineral

Duftite is a relatively common arsenate mineral with the formula CuPb(AsO4)(OH), related to conichalcite. It is green and often forms botryoidal aggregates. It is a member of the adelite-descloizite Group, Conichalcite-Duftite Series. Duftite and conichalcite specimens from Tsumeb are commonly zoned in color and composition. Microprobe analyses and X-ray powder-diffraction studies indicate extensive substitution of Zn for Cu, and Ca for Pb in the duftite structure. This indicates a solid solution among conichalcite, CaCu(AsO4 )(OH), austinite, CaZn(AsO4)(OH) and duftite PbCu(AsO4)(OH), all of them belonging to the adelite group of arsenates. It was named after Mining Councilor G Duft, Director of the Otavi Mine and Railroad Company, Tsumeb, Namibia. The type locality is the Tsumeb Mine, Tsumeb, Otjikoto Region, Namibia.

<span class="mw-page-title-main">Alacránite</span>

Alacránite (As8S9) is an arsenic sulfide mineral first discovered in the Uzon caldera, Kamchatka, Russia. It was named for its occurrence in the Alacrán silver/arsenic/antimony mine. Pampa Larga, Chile. It is generally more rare than realgar and orpiment. Its origin is hydrothermal. It occurs as subhedral to euhedral tabular orange to pale gray crystals that are transparent to translucent. It has a yellow-orange streak with a hardness of 1.5. It crystallizes in the monoclinic crystal system. It occurs with realgar and uzonite as flattened and prismatic grains up to 0.5 mm across.

Chaidamuite is a rare zinc – iron sulfate mineral with chemical formula: ZnFe3+(SO4)2(OH)·4H2O.

Clearcreekite is a carbonate mineral, polymorphous with peterbaylissite. The chemical formula of clearcreekite is Hg(1+)3CO3(OH)∙2H2O. It has a pale greenish yellow color and streak with tabular subhedral crystals and good cleavage on {001}. It is transparent with vitreous luster and uneven fracture. Its density (calculated from the idealized formula) is 6.96 g/cm3. The mineral is monoclinic with the space group P2/c. Clearcreekite is an extremely rare mineral from the Clear Creek mercury mine, New Idria district, San Benito County, California. It was probably formed after the alteration of other mercury minerals such as cinnabar. The mineral is named after the locality where it was found.

Jolliffeite is a rare selenide mineral with formula NiAsSe or (Ni,Co)AsSe. It is the selenium analogue of the sulfide mineral gersdorffite, NiAsS, with a common impurity of cobalt, CoAsSe. It is named for its discoverer, Alfred Jolliffe, (1907–1988), a Canadian geologist of Queen's University, Kingston, Ontario.

<span class="mw-page-title-main">Quintinite</span>

Quintinite is a carbonate mineral with the chemical formula Mg4Al2(OH)12CO3⋅3H2O.

<span class="mw-page-title-main">Madocite</span>

Madocite is a mineral with a chemical formula of Pb17(Sb,As)16S41. Madocite was named for the locality of discovery, Madoc, Ontario, Canada. It is found in the marbles of the Precambrian Grenville Limestone. It is orthorhombic and in the point group mm2. Its crystals are elongated and striated along [001] to a size of 1.5 mm.

<span class="mw-page-title-main">Studenitsite</span>

Studenitsite is a rare borate mineral with chemical formula of NaCa2[B9O14(OH)4]·2H2O.

Bursaite is a sulfosalt of the lillianite family. It has the formula Pb5Bi4S11 and orthorhombic structure. Bursaite is named after Bursa Province, Turkey, where it was discovered. It is generally located in regions rich in sulfur and commonly occurs alongside other sulfosalts. Its areas of formation are usually those that were once volcanogenic because it is generally aggregated with other minerals under intense heating. It was officially delisted as a mineral in 2006, being cited as an intergrowth of two other sulfosalts.

<span class="mw-page-title-main">Ardaite</span>

Ardaite is a very rare sulfosalt mineral with chemical formula Pb19Sb13S35Cl7 in the monoclinic crystal system, named after the Arda River, which passes through the type locality. It was discovered in 1978 and approved by the International Mineralogical Association in 1980. It was the second well-defined natural chlorosulfosalt, after dadsonite.

<span class="mw-page-title-main">Kostovite</span>

Kostovite is a rare orthorhombic-pyramidal gray white telluride mineral containing copper and gold with chemical formula AuCuTe4.

<span class="mw-page-title-main">Hemusite</span>

Hemusite is a very rare isometric gray mineral containing copper, molybdenum, sulfur, and tin with chemical formula Cu6SnMoS8. It was discovered by Bulgarian mineralogist Georgi Ivanov Terziev in 1963. He also described it and named it after Haemus, the ancient name of Stara planina (Balkan) mountains in Europe. The type locality is Chelopech copper ore deposit, Bulgaria. Later tiny deposits of hemusite were found in Ozernovskoe deposit, Kamchatka, Russia; Kawazu mine, Rendaiji, Shimoda city, Chūbu region, Honshu Island, Japan; Iriki mine, Iriki, Satsuma-gun, Kagoshima Prefecture, Kyushu Region, Japan; Kochbulak deposit, Tashkent, Uzbekistan. Hemusite occurs as rounded isometric grains and aggregates usually about 0.05 mm in diameter and in association with enargite, luzonite, colusite, stannoidite, renierite, tennantite, chalcopyrite, pyrite, and other minerals.

<span class="mw-page-title-main">Serandite</span> Mineral

Serandite is a mineral with formula Na(Mn2+,Ca)2Si3O8(OH). The mineral was discovered in Guinea in 1931 and named for J. M. Sérand. Serandite is generally red, brown, black or colorless. The correct name lacks an accent.

<span class="mw-page-title-main">John Leslie Jambor</span> Canadian geologist and mineralogist

John Leslie Jambor was a Canadian geologist and mineralogist. Jambor was an exceptional figure in the field of mineralogy and a major contributor to the Mineralogical Association of Canada (MAC).
Jambor has a Scopus h-index of 38.

<span class="mw-page-title-main">Ferronickel platinum</span> Rare occurring mineral

Ferronickel platinum is a very rarely occurring minerals from the mineral class of elements (including natural alloys, intermetallic compounds, carbides, nitrides, phosphides and silicides) with the chemical composition Pt2FeNi and thus is chemically seen as a natural alloy, more precisely an intermetallic compound of platinum, nickel and iron in a ratio of 2:1:1.

<span class="mw-page-title-main">Dresserite</span> Carbonate mineral

Dresserite is a mineral of the dresserite group, named in honor of John Alexander Dresser, geologist. It was approved by the IMA in 1968, but only a year after was it published. The rare mineral can only be found in Francon quarry, Canada. The quarry is located in the middle of the city of Montréal, but had been closed in 1981 and will not reopen in the future.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 Jambor, J.L. (1967). "New lead sulfantimonides from Madoc, Ontario; Part 2, Mineral descriptions" (PDF). Canadian Mineralogist. 9: 194–196.
  3. 1 2 3 4 "Information page for Playfairite". Mindat.
  4. "Information page for Playfairite". Webmineral.
  5. "Information page for Playfairite" (PDF). Handbook of Mineralogy.
  6. Michael Fleischer (1968), "New Mineral Names" (PDF), American Mineralogist, 53: 1424
  7. Lynne Jambor and John Dutrizac (2008), Memorial of John L. Jambor (1936-2008), American Mineralogist, vol. 93, pp. 710-712