List of minerals recognized by the International Mineralogical Association

Last updated

Crystals of serandite, natrolite, analcime, and aegirine from Mont Saint-Hilaire, Quebec, Canada Serandite, natrolite, analcime, aegirine 300-4-2112.JPG
Crystals of serandite, natrolite, analcime, and aegirine from Mont Saint-Hilaire, Quebec, Canada

Mineralogy is an active science in which minerals are discovered or recognised on a regular basis. Use of old mineral names is also discontinued, for example when a name is no longer considered valid. Therefore, a list of recognised mineral species is never complete.

Contents

Minerals are distinguished by various chemical and physical properties. Differences in chemical composition and crystal structure distinguish the various species. Within a mineral species there may be variation in physical properties or minor amounts of impurities that are recognized by mineralogists or wider society as a mineral variety.

The International Mineralogical Association (IMA) is the international scientific group that recognises new minerals and new mineral names. However, minerals discovered before 1959 did not go through the official naming procedure. Some minerals published previously have been either confirmed or discredited since that date. This list contains a mixture of mineral names that have been approved since 1959 and those mineral names believed to still refer to valid mineral species (these are called "grandfathered" species). Presently, each year about 90–110 new mineral species (the sum of all mutations c. 120 per year) are officially approved by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association. [1]

As of July 2023, the IMA - CNMNC Master List of Minerals lists 5,955 valid minerals, including 1,153 pre-IMA minerals (grandfathered), and 97 questionable minerals. [2] Also as of July 2023, the Handbook of Mineralogy lists 5,663 species, [3] and the IMA Database of Mineral Properties/Rruff Project lists 5,956 valid species (IMA/CNMNC) of a total of 6,189 minerals. [4] The IMA/Rruff database includes 1,164 pre-IMA minerals. [4]

Due to the length of this list, it is divided into alphabetical groups. The minerals are sorted by name.

Working practices

Miscellany

Notes

Feldspar series Feldspar group.svg
Feldspar series
Phase diagram of Al2SiO5
(aluminosilicates). [52]

Nomenclature dictionary

Special minerals (relaxed sense)
"Ore" minerals (sulfides and oxides)
Evaporite and similar minerals
Mineral structures with a tetrahedral unit, monomeric minerals
Mineral structures with a tetrahedral unit, di- and chain silicates
Mineral structures with a tetrahedral unit, framework silicates
Mineral structures with a tetrahedral unit, other cases
Other cases (relaxed sense)

See also

Further reading

Notes

  1. No Webmineral reference
  2. No Webmineral reference
  3. No Handbook of Mineralogy reference
  4. No Webmineral reference

Related Research Articles

<span class="mw-page-title-main">Zoisite</span> Sorosilicate mineral

Zoisite, first known as saualpite, after its type locality, is a calcium aluminum hydroxy sorosilicate belonging to the epidote group of minerals. Its chemical formula is Ca2Al3(SiO4)(Si2O7)O(OH).

<span class="mw-page-title-main">Torbernite</span> Copper uranyl phosphate mineral

Torbernite, also known as chalcolite, is a relatively common mineral with the chemical formula Cu[(UO2)(PO4)]2(H2O)12. It is a radioactive, hydrated green copper uranyl phosphate, found in granites and other uranium-bearing deposits as a secondary mineral. The chemical formula of torbernite is similar to that of autunite in which a Cu2+ cation replaces a Ca2+ cation. Torbernite tends to dehydrate to metatorbernite with the sum formula Cu[(UO2)(PO4)]2(H2O)8.

<span class="mw-page-title-main">Silicate mineral</span> Rock-forming minerals with predominantly silicate anions

Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of minerals and make up approximately 90 percent of Earth's crust.

<span class="mw-page-title-main">Glaucophane</span>

Glaucophane is the name of a mineral and a mineral group belonging to the sodic amphibole supergroup of the double chain inosilicates, with the chemical formula ☐Na2(Mg3Al2)Si8O22(OH)2.

<span class="mw-page-title-main">Adamite</span>

Adamite is a zinc arsenate hydroxide mineral, Zn2AsO4OH. It is a mineral that typically occurs in the oxidized or weathered zone above zinc ore occurrences. Pure adamite is colorless, but usually it possess yellow color due to Fe compounds admixture. Tints of green also occur and are connected with copper substitutions in the mineral structure. Olivenite is a copper arsenate that is isostructural with adamite and there is considerable substitution between zinc and copper resulting in an intermediate called cuproadamite. Zincolivenite is a recently discovered mineral being an intermediate mineral with formula CuZn(AsO4)(OH). Manganese, cobalt, and nickel also substitute in the structure. An analogous zinc phosphate, tarbuttite, is known.

<span class="mw-page-title-main">Danburite</span> Tectosilicate mineral

Danburite is a calcium boron silicate mineral with a chemical formula of CaB2(SiO4)2.

<span class="mw-page-title-main">Braunite</span> Nesosilicate mineral of manganese

Braunite is a silicate mineral containing both di- and tri-valent manganese with the chemical formula: Mn2+Mn3+6[O8|SiO4]. Common impurities include iron, calcium, boron, barium, titanium, aluminium, and magnesium.

<span class="mw-page-title-main">Borate mineral</span> Mineral which contains a borate anion group

The Borate Minerals are minerals which contain a borate anion group. The borate (BO3) units may be polymerised similar to the SiO4 unit of the silicate mineral class. This results in B2O5, B3O6, B2O4 anions as well as more complex structures which include hydroxide or halogen anions. The [B(O,OH)4] anion exists as well.

<span class="mw-page-title-main">Abenakiite-(Ce)</span> Cyclosilicate mineral

Abenakiite-(Ce) is a mineral of sodium, cerium, neodymium, lanthanum, praseodymium, thorium, samarium, oxygen, sulfur, carbon, phosphorus, and silicon with a chemical formula Na26Ce6(SiO3)6(PO4)6(CO3)6(S4+O2)O. The silicate groups may be given as the cyclic Si6O18 grouping. The mineral is named after the Abenaki, an Algonquian Indian tribe of New England. Its Mohs scale rating is 4 to 5.

<span class="mw-page-title-main">Hafnon</span>

Hafnon is a hafnium nesosilicate mineral, chemical formula (Hf,Zr)SiO4 or (Hf,Zr,Th,U,Y)SiO4. In natural zircon ZrSiO4 part of the zirconium is replaced by the very similar hafnium and so natural zircon is never pure ZrSiO4. A zircon with 100% hafnium substitution can be made synthetically and is hafnon.

<span class="mw-page-title-main">Nickel–Strunz classification</span> Scheme for categorizing minerals

Nickel–Strunz classification is a scheme for categorizing minerals based upon their chemical composition, introduced by German mineralogist Karl Hugo Strunz in his Mineralogische Tabellen (1941). The 4th and the 5th edition was also edited by Christel Tennyson (1966). It was followed by A.S. Povarennykh with a modified classification.

<span class="mw-page-title-main">Danalite</span>

Danalite is an iron beryllium silicate sulfide mineral with formula: Fe2+4Be3(SiO4)3S.

<span class="mw-page-title-main">Népouite</span> Nickel ore from the serpentine family (phyllosilicate)

Népouite is a rare nickel silicate mineral which has the apple green color typical of such compounds. It was named by the French mining engineer Edouard Glasser in 1907 after the place where it was first described, the Népoui Mine, Népoui, Poya Commune, North Province, New Caledonia. The ideal formula is Ni3(Si2O5)(OH)4, but most specimens contain some magnesium, and (Ni,Mg)3(Si2O5)(OH)4 is more realistic. There is a similar mineral called lizardite in which all of the nickel is replaced by magnesium, formula Mg3(Si2O5)(OH)4. These two minerals form a series; intermediate compositions are possible, with varying proportions of nickel to magnesium.

<span class="mw-page-title-main">Bustamite</span>

Bustamite is a calcium manganese inosilicate (chain silicate) and a member of the wollastonite group. Magnesium, zinc and iron are common impurities substituting for manganese. Bustamite is the high-temperature polymorph of CaMnSi2O6 and johannsenite is the low temperature polymorph. The inversion takes place at 830 °C (1,530 °F), but may be very slow.
Bustamite could be confused with light-colored rhodonite or pyroxmangite, but both these minerals are biaxial (+) whereas bustamite is biaxial (-).

<span class="mw-page-title-main">Stillwellite-(Ce)</span>

Stillwellite-(Ce) is a rare-earth boro-silicate mineral with chemical formula (Ce,La,Ca)BSiO5.

<span class="mw-page-title-main">Plancheite</span>

Plancheite is a hydrated copper silicate mineral with the formula Cu8Si8O22(OH)4•(H2O). It is closely related to shattuckite in structure and appearance, and the two minerals are often confused.

<span class="mw-page-title-main">Kanoite</span>

Kanoite is a light pinkish brown silicate mineral that is found in metamorphic rocks. It is an inosilicate and has a chemical formula of (Mg,Mn2+)2Si2O6. It is a member of pyroxene group and clinopyroxene subgroup.

<span class="mw-page-title-main">Vlasovite</span>

Vlasovite is a rare inosilicate (chain silicate) mineral with sodium and zirconium, with the chemical formula Na2ZrSi4O11. It was discovered in 1961 at Vavnbed Mountain in the Lovozero Massif, in the Northern Region of Russia. The researchers who first identified it, R P Tikhonenkova and M E Kazakova, named it for Kuzma Aleksevich Vlasov (1905–1964), a Russian mineralogist and geochemist who studied the Lovozero massif, and who was the founder of the Institute of Mineralogy, Geochemistry, and Crystal Chemistry of Rare Elements, Moscow, Russia.

<span class="mw-page-title-main">Fluorellestadite</span> Nesosilicate mineral

Fluorellestadite is a rare nesosilicate of calcium, with sulfate and fluorine, with the chemical formula Ca10(SiO4)3(SO4)3F2. It is a member of the apatite group, and forms a series with hydroxylellestadite.

<span class="mw-page-title-main">Daubréelite</span>

Daubréelite is a rare sulfide mineral. It crystallizes with cubic symmetry and has chemical composition of Fe2+Cr3+2S4. It usually occurs as black platy aggregates.

References

  1. 1 2 "Missing Minerals". Elements. 3: 360. 2007.
  2. Pasero, Marco; et al. (July 2023). "The New IMA List of Minerals – A Work in Progress". The New IMA List of Minerals. IMA – CNMNC (Commission on New Minerals Nomenclature and Classification). Retrieved 20 July 2023.
  3. Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C. (eds.). "Handbook of Mineralogy". Mineralogical Society of America. Retrieved 20 July 2023.
  4. 1 2 3 "IMA Database of Mineral Properties/RRUFF Project". Department of Geosciences, University of Arizona. Retrieved 20 July 2023.
  5. "Minerals approved in 2010" (PDF). IMA/ CNMNC. Retrieved 10 March 2012.
  6. 1 2 Frank C. Hawthorne; Roberta Oberti; George E. Harlow; Walter V. Maresch; Robert F. Martin; John C. Schumacher; Mark D. Welch (2012). "Nomenclature of the amphibole supergroup". American Mineralogist. 97 (11–12): 2031–2048. Bibcode:2012AmMin..97.2031H. doi:10.2138/am.2012.4276.
  7. Nickel, Ernest H.; Grice, Joel D. (1998). "The IMA Commission on New Minerals and Mineral Names: Procedures and Guidelines on Mineral Nomenclature, 1998" (PDF). The Canadian Mineralogist. 36 (1–4): 237. Bibcode:1998MinPe..64..237N. doi:10.1007/BF01226571. S2CID   10576420.
  8. Nickel EH, Nichols MC (2007). IMA/CNMNC List of Mineral Names: draft (PDF). Materials Data, Inc.
  9. Nickel EH, Nichols MC (2009). IMA/CNMNC List of Mineral Names (PDF). Materials Data, Inc.
  10. "IMA Mineral List". RRUFF Database.
  11. Burke E A J (2006). "A mass discreditation of GQN minerals". The Canadian Mineralogist. 44 (6): 1557–1560. Bibcode:2006CaMin..44.1557B. doi:10.2113/gscanmin.44.6.1557.
  12. de Fourestier, Jeffrey (2002). "The Naming of Mineral Species Approved by the Commission on New Minerals and Mineral Names of the International Mineralogical Association: A Brief History". The Canadian Mineralogist. 40 (6): 1721–1735. Bibcode:2002CaMin..40.1721D. CiteSeerX   10.1.1.579.3170 . doi:10.2113/gscanmin.40.6.1721.
  13. "The New IMA List of Minerals (September 2012)" (PDF). IMA-CNMNC.
  14. MinDat - Hatrurite
  15. Levinson A A (1966). "A system of nomenclature for rare-earth minerals". American Mineralogist. 51: 152–158.
  16. Nickel, E H; Mandarino, J A (1987). "Procedures involving the IMA Commission on New Minerals and Mineral Names and guidelines on mineral nomenclature". American Mineralogist. 72: 1031–1042.
  17. Burke E A J (2008). "Tidying up mineral names: an IMA-CNMNC scheme for suffixes, hyphens and diacritical marks" (PDF). The Mineralogical Record. 39: 131–135.
  18. Armbruster, Thomas (2002). "Revised nomenclature of högbomite, nigerite, and taafeite minerals" (PDF). European Journal of Mineralogy. 14 (2): 389–395. Bibcode:2002EJMin..14..389A. CiteSeerX   10.1.1.594.9072 . doi:10.1127/0935-1221/2002/0014-0389. S2CID   41477140.
  19. Bindi, L; Evain M; Spry P G; Menchetti S (2007). "The pearceite-polybasite group of minerals: crystal chemistry and new nomenclature rules". American Mineralogist. 92 (5–6): 918–925. Bibcode:2007AmMin..92..918B. doi:10.2138/am.2007.2440. S2CID   54853946.
  20. Darrell J. Henry; Milan Novák; Frank C. Hawthorne; Andreas Ertl; Barbara L. Dutrow; Pavel Uher & Federico Pezzotta (2011). "Nomenclature of the tourmaline-supergroup minerals" (PDF). American Mineralogist. 96 (5–6): 895–913. Bibcode:2011AmMin..96..895H. doi:10.2138/am.2011.3636. S2CID   38696645.
  21. Frédéric Hatert; Stuart J. Mills; Marco Pasero; Peter A. Williams (2013). "CNMNC guidelines for the use of suffixes and prefixes in mineral nomenclature, and for the preservation of historical names" (PDF). European Journal of Mineralogy. 25 (1): 113–115. Bibcode:2013EJMin..25..113H. doi:10.1127/0935-1221/2013/0025-2267. hdl:2268/136406.
  22. Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan JR, White TJ (2010). "Nomenclature of the apatite supergroup minerals". European Journal of Mineralogy. 22 (2): 163–179. Bibcode:2010EJMin..22..163P. doi:10.1127/0935-1221/2010/0022-2022.
  23. Armbruster T, Bonazzi P, Akasaka M, Bermanec V, Chopin C, Giere R, Huess-Assbichler S, Liebscher A, Menchetti S, Pan Y, Pasero M (2006). "Recommended nomenclature of epidote-group minerals". European Journal of Mineralogy. 18 (5): 551–567. Bibcode:2006EJMin..18..551A. CiteSeerX   10.1.1.511.9929 . doi:10.1127/0935-1221/2006/0018-0551.
  24. Hatert F, Mills SJ, Pasero M, Williams PA (2013). "CNMNC guidelines for the use of suffixes and prefixes in mineral nomenclature, and for the preservation of historical names". European Journal of Mineralogy. 25 (1): 113–115. Bibcode:2013EJMin..25..113H. doi:10.1127/0935-1221/2013/0025-2267. hdl:2268/136406.
  25. Hålenius U, Hatert F, Pasero M, Mills SJ (2015). "IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) Newsletter 26. New minerals and nomenclature modifications approved in 2015". Mineralogical Magazine. 79 (4): 941–947. doi: 10.1180/minmag.2015.079.4.05 .
  26. Michael Fleischer (August 1966). "Index of New Mineral Names, Discredited Minerals, and Changes of Mineralogical Nomenclature in Volumes 1–50 of The American Mineralogist". American Mineralogist (8): 1247–1336.
  27. 1 2 "Master List of IMA-approved minerals (May 2015)" (PDF). IMA-CNMNC. Archived from the original (PDF) on 2016-03-03. Retrieved 2015-07-07.
  28. Ernest Nickel; Monte Nichols (9 February 2004). "Mineral Names, Redefinitions & Discreditations Passed by the CNMMN of the IMA" (PDF). Aleph Enterprises.
  29. Mindat.org - Tohdite
  30. Mindat.org - Tellurocanfieldite
  31. Argentit (German)
  32. Mindat.org - Schapbachite
  33. Hey, M H (1982). "International Mineralogical Association: Commission on New Minerals and Mineral Names". Mineralogical Magazine. 46 (341): 513–514. Bibcode:1982MinM...46..513H. doi:10.1180/minmag.1982.046.341.25. S2CID   140202196.
  34. Walenta K, Bernhardt HJ, Theye T (2004). "Cubic AgBiS2 (schapbachite) from the Silberbrünnle mine near Gengenbach in the Central Black Forest, Germany". Neues Jahrbuch für Mineralogie - Monatshefte. 2004 (9): 425–432. doi:10.1127/0028-3649/2004/2004-0425.
  35. Yoshinaga, N.; Aomine, S. (1962). "Allophane in some Ando soils". Soil Science and Plant Nutrition. 8 (2): 6–13. doi:10.1080/00380768.1962.10430983.
  36. Yoshinaga, N.; Aomine, S. (1962). "Imogolite in some Ando soils". Soil Science and Plant Nutrition. 8 (3): 22–29. doi: 10.1080/00380768.1962.10430993 .
  37. Hey, M.H. (1967). "International Mineralogical Association: Commission on New Minerals and Mineral Names" (PDF). Mineralogical Magazine. 36 (277): 133. Bibcode:1967MinM...36..131.. doi:10.1180/minmag.1967.036.277.20.
  38. Wada, Koji; Yoshinaga, Naganori (January–February 1969). "The structure of "Imogolite"" (PDF). The American Mineralogist. 54: 50–71. Retrieved 13 March 2012.
  39. Bailey, S. W. (1971). "Summary of national and international recommendations on clay mineral nomenclature: Clays and Clay Minerals". Clays and Clay Minerals. 19 (2): 131. doi: 10.1346/ccmn.1971.0190210 .
  40. Fleischer, M. (1983). Glossary of Mineral Species. Tucson, AZ: Mineralogical Record.
  41. Bayliss, P. (1987). "Mineralogical notes: mineral nomenclature: imogolite" (PDF). Mineralogical Magazine. 51 (360): 327. doi:10.1180/minmag.1987.051.360.18. S2CID   95074549.
  42. Mindat
  43. Sokolova, E.; Hawthorne, F. C.; Abdu, Y.A.; Genovese, A.; Cámara, F. (2015). "Reapproval of betalomonosovite as a valid mineral species: single-crystal X-ray diffraction, HRTEM, Raman and IR". Periodico di Mineralogia. ECMS2015: 157–158.
  44. Mineralienatlas
  45. Yu, Z.; Hao, Z.; Wang, H.; Yin, S.; Cai, J. (2011). "Jichengite 3CuIr2S4·(Ni,Fe)9S8, a New Mineral, and Its Crystal Structure". Acta Geologica Sinica. 85 (5): 1022–1027. doi:10.1111/j.1755-6724.2011.00537.x. S2CID   129587895.
  46. Mindat
  47. Back, Malcolm E. (2014). Fleischer's Glossary of Mineral Species (11 ed.). Tucson AZ: Mineralogical Record Inc. p. 434.
  48. Back, Malcolm E.; Mandarino, Joseph A. (2008). Fleischer's Glossary of Mineral Species (10 ed.). Tucson AZ: Mineralogical Record Inc. p. 345.
  49. MinDat - Tiragalloite
  50. MinDat - Grenmarite
  51. Whitney, D.L. (2002). "Coexisting andalusite, kyanite, and sillimanite: Sequential formation of three Al2SiO5 polymorphs during progressive metamorphism near the triple point, Sivrihisar, Turkey". American Mineralogist. 87 (4): 405–416. doi:10.2138/am-2002-0404.
  52. Whitney, D.L. (2002). "Coexisting andalusite, kyanite, and sillimanite: Sequential formation of three Al2SiO5 polymorphs during progressive metamorphism near the triple point, Sivrihisar, Turkey". American Mineralogist. 87 (4): 405–416. doi:10.2138/am-2002-0404.
  53. Mindat.org - Chloromagnesite
  54. Mindat.org - Zinkosite
  55. Mindat.org - Biotite
  56. Handbookofmineralogy - Biotite
  57. Rieder, Milan, Cavazzini, Giancarlo, D'yakonov, Yurii S., Frank-Kamenetskii, Viktor A. (1998). "Nomenclature of the micas (IMA/CNMMN Mica Group Subcommittee Report)" (PDF). Canadian Mineralogist. 36: 905–912.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  58. Mindat.org - Chabazite
  59. Handbookofmineralogy - Chabazite
  60. Mindat.org - Dachiardite
  61. Webmineral - Dachiardite
  62. Mindat.org - Heulandite
  63. Handbookofmineralogy - Heulandite
  64. Mindat.org - Pyrochlore
  65. Webmineral - Pyrochlore
  66. Handbookofmineralogy - Pyrochlore
  67. Mindat.org - Roméite
  68. Webmineral - Roméite
  69. Handbookofmineralogy - Roméite
  70. Mindat.org - Betafite
  71. Webmineral - Betafite
  72. Handbookofmineraology - Betafite
  73. Mindat.org - Microlite group
  74. Mindat.org - Elsmoreite group
  • Web: rruff.info/ima/, 'IMA database of mineral properties' switchboard:
    • 'Not an IMA approved mineral' tag – E.g. buserite
    • 'Discredited' mineral tag – E.g. bindheimite
    • 'Pending publication' tag – E.g. drobecite (IMA 2002-034)
    • 'Questionable mineral species' tag – E.g. shubnikovite