Cohenite

Last updated
Cohenite
Kristallstruktur Zementit.png
Structure of cohenite (or cementite)
General
CategoryNative element mineral, carbide
Formula
(repeating unit)
(Fe,Ni,Co)3 C
IMA symbol Coh [1]
Strunz classification 1.BA.05
Crystal system Orthorhombic
Crystal class Dipyramidal (mmm)
H-M symbol: (2/m 2/m 2/m)
Space group Pnma
Unit cell a = 5.09 Å, b = 6.74 Å,
c = 4.52 Å; Z = 4
Identification
ColorTin-white; oxidizes to light bronze then golden yellow
Crystal habit Platy to needlelike crystals; also as rims on or in dendritic intergrowths with iron
Cleavage Good on {100}, {010}, and {001}
Tenacity Brittle
Mohs scale hardness5.5–6
Luster Metallic
Diaphaneity Opaque
Specific gravity 7.2–7.65
Other characteristicsStrongly magnetic
References [2] [3] [4] [5]

Cohenite is a naturally occurring iron carbide mineral with the chemical structure (Fe, Ni, Co)3 C. This forms a hard, shiny, silver mineral which was named by E. Weinschenk in 1889 after the German mineralogist Emil Cohen, who first described and analysed material from the Magura meteorite found near Slanica, Žilina Region, Slovakia. [3] Cohenite is found in rod-like crystals in iron meteorites. [6]

On Earth cohenite is stable only in rocks which formed in a strongly reducing environment and contain native iron deposits. Such conditions existed in some places where molten magmas invaded coal deposits, e.g. on Disko Island in Greenland, or at the Bühl near Kassel in Germany. [5]

Associated minerals include native iron, schreibersite, troilite and wustite. [5]

Similar iron carbides occur also in technical iron alloys and are called cementite.

See also

Related Research Articles

<span class="mw-page-title-main">Octahedrite</span> Structural class of iron meteorites

Octahedrites are the most common structural class of iron meteorites. The structures occur because the meteoric iron has a certain nickel concentration that leads to the exsolution of kamacite out of taenite while cooling.

<span class="mw-page-title-main">Pentlandite</span> Iron–nickel sulfide

Pentlandite is an iron–nickel sulfide with the chemical formula (Fe,Ni)9S8. Pentlandite has a narrow variation range in nickel to iron ratios (Ni:Fe), but it is usually described as 1:1. In some cases, this ratio is skewed by the presence of pyrrhotite inclusions. It also contains minor cobalt, usually at low levels as a fraction of weight.

<span class="mw-page-title-main">Cementite</span> Compound of iron and carbon

Cementite (or iron carbide) is a compound of iron and carbon, more precisely an intermediate transition metal carbide with the formula Fe3C. By weight, it is 6.67% carbon and 93.3% iron. It has an orthorhombic crystal structure. It is a hard, brittle material, normally classified as a ceramic in its pure form, and is a frequently found and important constituent in ferrous metallurgy. While cementite is present in most steels and cast irons, it is produced as a raw material in the iron carbide process, which belongs to the family of alternative ironmaking technologies. The name cementite originated from the theory of Floris Osmond and J. Werth, in which the structure of solidified steel consists of a kind of cellular tissue, with ferrite as the nucleus and Fe3C the envelope of the cells. The carbide therefore cemented the iron.

Hapkeite is a mineral discovered in the Dhofar 280 meteorite found in 2000 in Oman on the Arabian peninsula. The meteorite is believed to originate from the Moon; specifically, it appears to be a fragment of lunar highland breccia. Hapkeite's composition is of silicon and iron, and it is similar to other silicon-iron minerals found on Earth. An impact on the Moon is thought to have launched the partially molten or vaporized material into orbit.

<span class="mw-page-title-main">Chromite</span> Crystalline mineral

Chromite is a crystalline mineral composed primarily of iron(II) oxide and chromium(III) oxide compounds. It can be represented by the chemical formula of FeCr2O4. It is an oxide mineral belonging to the spinel group. The element magnesium can substitute for iron in variable amounts as it forms a solid solution with magnesiochromite (MgCr2O4). A substitution of the element aluminium can also occur, leading to hercynite (FeAl2O4). Chromite today is mined particularly to make stainless steel through the production of ferrochrome (FeCr), which is an iron-chromium alloy.

<span class="mw-page-title-main">Ullmannite</span> Nickel antimony sulfide mineral

Ullmannite or Nickel glance is a nickel antimony sulfide mineral with formula: NiSbS. Considerable substitution occurs with cobalt and iron in the nickel site along with bismuth and arsenic in the antimony site. A solid solution series exists with the high cobalt willyamite.

<span class="mw-page-title-main">Oldhamite</span> Rocksalt group, sulfide mineral

Oldhamite is a calcium magnesium sulfide mineral with the chemical formula (Ca,Mg)S. Ferrous iron may also be present in the mineral resulting in the chemical formula (Ca,Mg,Fe)S. It is a pale to dark brown accessory mineral in meteorites. It crystallizes in the cubic crystal system, but typically occurs as anhedral grains between other minerals.

<span class="mw-page-title-main">Loellingite</span> Iron arsenide mineral

Loellingite, also spelled löllingite, is an iron arsenide mineral with formula FeAs2. It is often found associated with arsenopyrite (FeAsS) from which it is hard to distinguish. Cobalt, nickel and sulfur substitute in the structure. The orthorhombic lollingite group includes the nickel iron arsenide rammelsbergite and the cobalt iron arsenide safflorite. Leucopyrite is an old synonym for loellingite.

<span class="mw-page-title-main">Troilite</span> Rare iron sulfide mineral: FeS

Troilite is a rare iron sulfide mineral with the simple formula of FeS. It is the iron-rich endmember of the pyrrhotite group. Pyrrhotite has the formula Fe(1-x)S which is iron deficient. As troilite lacks the iron deficiency which gives pyrrhotite its characteristic magnetism, troilite is non-magnetic.

<span class="mw-page-title-main">Taenite</span> Alloy of iron and nickel found in meteorites

Taenite is a mineral found naturally on Earth mostly in iron meteorites. It is an alloy of iron and nickel, with a chemical formula of Fe,Ni and nickel proportions of 20% up to 65%.

<span class="mw-page-title-main">Emil Cohen</span> German mineralogist

Emil Wilhelm Cohen was a German mineralogist and petrographer, born in Jutland.

<span class="mw-page-title-main">Native metal</span> Form of metal

A native metal is any metal that is found pure in its metallic form in nature. Metals that can be found as native deposits singly or in alloys include aluminium, antimony, arsenic, bismuth, cadmium, chromium, cobalt, indium, iron, manganese, molybdenum, nickel, niobium, rhenium, selenium, tantalum, tellurium, tin, titanium, tungsten, vanadium, and zinc, as well as the gold group and the platinum group. Among the alloys found in native state have been brass, bronze, pewter, German silver, osmiridium, electrum, white gold, silver-mercury amalgam, and gold-mercury amalgam.

<span class="mw-page-title-main">Haxonite</span>

Haxonite is an iron nickel carbide mineral found in iron meteorites and carbonaceous chondrites. It has a chemical formula of (Fe,Ni)23C6, crystallises in the cubic crystal system and has a Mohs hardness of 5+12 - 6.

<span class="mw-page-title-main">Alabandite</span> Sulfide mineral

Alabandite or alabandine is a rarely occurring manganese sulfide mineral. It crystallizes in the cubic crystal system with the chemical composition Mn2+S and develops commonly massive to granular aggregates, but rarely also cubic or octahedral crystals to 1 cm.

<span class="mw-page-title-main">Cubanite</span> Copper iron sulfide mineral

Cubanite is a copper iron sulfide mineral that commonly occurs as a minor alteration mineral in magmatic sulfide deposits. It has the chemical formula CuFe2S3 and when found, it has a bronze to brass-yellow appearance. On the Mohs hardness scale, cubanite falls between 3.5 and 4 and has a orthorhombic crystal system. Cubanite is chemically similar to chalcopyrite; however, it is the less common copper iron sulfide mineral due to crystallization requirements.

<span class="mw-page-title-main">Awaruite</span>

Awaruite is a naturally occurring alloy of nickel and iron with a composition from Ni2Fe to Ni3Fe.

<span class="mw-page-title-main">Telluric iron</span>

Telluric iron, also called native iron, is iron that originated on Earth, and is found in a metallic form rather than as an ore. Telluric iron is extremely rare, with only one known major deposit in the world, located in Greenland.

<span class="mw-page-title-main">Daubréelite</span> Sulfide mineral

Daubréelite is a rare sulfide mineral. It crystallizes with cubic symmetry and has chemical composition of Fe2+Cr3+2S4. It usually occurs as black platy aggregates.

<span class="mw-page-title-main">Carlsbergite</span> Chromium nitride mineral found in meteorites

Carlsbergite is a nitride mineral that has the chemical formula CrN, or chromium nitride.

<span class="mw-page-title-main">Millerite</span> Nickel sulfide mineral

Millerite is a nickel sulfide mineral, NiS. It is brassy in colour and has an acicular habit, often forming radiating masses and furry aggregates. It can be distinguished from pentlandite by crystal habit, its duller colour, and general lack of association with pyrite or pyrrhotite.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. Mineralienatlas
  3. 1 2 Mindat.org Cohenite
  4. Webmineral.com Cohenite
  5. 1 2 3 Handbook of Mineralogy
  6. Vagn F. Buchwald, Handbook of Iron Meteorites, University of California Press, 1975 ISBN   978-0520029347