Pollution-induced community tolerance

Last updated

Pollution-induced community tolerance (PICT) [1] [2] is an approach to measuring the response of pollution-induced selective pressures on a community. It is an eco-toxicological tool that approaches community tolerance to pollution from a holistic standpoint. Community Tolerance can increase in one of three ways: physical adaptations or phenotypic plasticity, selection of favorable genotypes, and the replacement of sensitive species by tolerant species in a community.

Contents

PICT differs from the population tolerance approach to community tolerance in that it can be easily applied to any ecosystem and it is not critical to use a representative test organism, as with the population tolerance approach.

Community tolerance

Community tolerance can be used as indicator for determining if a toxicant has a disturbance on an exposed community for multiple types of organisms. [3] Tolerance of a toxicant can increase by three ways: physiological adaptation, also known as the phenotypic plasticity of an individual; tolerant genotypes selected within a population over time; and the replacement of species with more tolerant ones within a community. [1] Physiological adaptation, or phenotypic plasticity, is the ability of an individual organism to change its phenotype in response to changes in the environment. [4] This can occur with huge variance between the type of organism and the type of the disturbance they experience. Natural selection that occurs over several generations causes an entire population to exhibit specific selection of genotypes. [5] Over time, tolerant genotypes can be selected over non-tolerant ones and can cause a shift in a population’s genome. [6] Natural selection can also cause a replacement of less tolerant species with more tolerant species. [5] All of these aspects can alter a community's structure drastically, and if a toxicant can be identified as the culprit, action can take place to prevent the accumulation and environmental impacts of that toxicant. [3] PICT can be used for linkage between cause (exposure) and effect of the toxicants due to the structure of a community that has survived the event, also known as toxicant-induced succession (TIS). [6] Toxicant-induced succession would be the development of more tolerant generations once a chemical was introduced into the environment. This is why the PICT method is most often applied to communities with short generation times such as microbial and algal communities, [7] [8] [2] whereas there are rare works that use the PICT tool on organisms other than microorganisms. [9] [10] [11]

There are two types of tolerances that can occur: multiple and co-tolerance. [12] [13] Multiple tolerances can elevate an individual' ability to tolerate several toxicants present at once. [1] This means that the type of chemicals present in the environment, the concentration, and the organisms that are affected could alter the environment in multiple different ways. Co-tolerance is the ability of an organism to develop a tolerance to a certain toxicant in short-term tests, and obtain that tolerance for other toxicants similar to the first. [1] Furthermore, co-tolerance depends on the interaction of different factors, such as the toxicant to which communities have been chronically exposed, the mode(s) of action of the different toxicants, but also the detoxification mechanisms implemented by the organisms, and the targeted biological community (e.g., heterotrophs, heterotrophs) [12] It can be difficult to determine which type of tolerance is occurring if there are multiple types of toxicants in a community because they could be acting simultaneously. Basically it is difficult to understand what exactly may be going on in a community without testing it with multiple ecotoxicological tools with long- and short-term toxicity tests. However, in the context of biomonitoring with the PICT method, co-tolerance could be an advantage, as it would allow working step by step. A first step would then be to use a model toxicant from a class of pollutants (selected on the basis of their co-tolerance properties) in order to limit the number of suspect pollutants in the ecotoxicological assessment of an environment [2] For example, a PICT study on soil in microcosms amended with organic manure observed co-tolerance only between antibiotics of the same group (oxytetracycline and tetracycline), as expected from their identical mode of action. [14] This type of approach is still preliminary, there is a need for further in situ studies combining PICT with chemical monitoring of environments, experimental work under controlled laboratory conditions, and integration of PICT into modeling approaches to precise theses parterns of co-tolerance. [15] [16] [17] A complementary approach derived from Pesce et al. (2011) [18] and Foulquier et al. (2015) [19] was recently applied by Tlili et al (2020), [20] combining passive sampling systems with PICT bioassays on river biofilms collected upstream and downstream of wastewater treatment plants at two-year intervals (before and after a change in effluent treatment). Their results demonstrate the value of combining the PICT approach with the use of passive sampler extracts to establish causality between in situ exposure to complex mixtures of micropollutants and ecotoxic effects on autotrophic and heterotrophic microbial communities.

Field studies

Assessing pollution-induced community tolerance can be done utilizing in situ techniques, many of which involve the use of known or created chemical exposure gradients. One example is the use of a known concentration gradient of Tri-n-butylin to assess PICT in periphyton. [21] Tolerance patterns showed that tolerance was highest closest to the marina that was the source of contamination. The use of reference sites in addition to contaminated sites is also commonly used for translocation assessments of PICT. A study in Germany cultured periphyton on glass discs in two river systems north of Leipzig, Germany. One system was the contaminated area of study and the other was 10 km upstream and uncontaminated, intended to be used as a reference. After the colonization period, 6 of the 10 racks of glass discs were trans-located to the other river system. During the experiment the community structure present on the glass discs from the reference site, when translocated to the contaminated site changed to mirror that of the control discs that were left in the contaminated sites. [3] Note the interest of using long-term observation sites to address the consequences of contamination and restoration of environments with PICT. One example is the Ardières-Morcille river hydrology observatory in the Beaujolais (vineyard region, France) where numerous in situ PICT studies have been conducted, [22] [23] [24] [25] [26] and which has also been used for many PICT experiments in the laboratory (see for example [27] ). Of particular note at this site is the study conducted by Pesce et al. (2016) [28] during three consecutive years (2009-2011): The authors monitored the decrease in tolerance of periphyton to diuron (herbicide applied in vineyards and banned since 2008) downstream of the river crossing this wine-growing watershed. Their results showed a direct link between the evolution of an agricultural practice (here the banning of diuron) and ecological changes in the river (through the loss of tolerance measured by the PICT). Lake Geneva is one of the subalpine lakes studied for a long time by the International Commission for the Protection of Lake Geneva (CIPEL). A PICT study carried out 12 years apart showed the restoration of the lake's phytoplankton with a concomitant decrease in the tolerance of the communities towards atrazine and copper and in the concentrations of these two contaminants (following legislation limiting the use of atrazine in agriculture and framing the management of industrial waste). [29] In another study in Denmark, enclosure experiments were done allowing for an assessment of PICT utilizing the lake water from Lake Bure as a baseline. By using this water from the lake potentially confounding variables would be nullified by comparing results to the control. Concentrations of atrazine and copper were added to these enclosures in varying concentrations. As in other experiments previously discussed periphyton communities were used in this experiment and were cultured using glass discs. Photosynthetic activity was measured and used as a measurement of PICT throughout the experiment. The experiment showed that elevated levels of Cu lead to community tolerance of the phytoplankton community as well as co-tolerance of zinc. Total Biomass decreased at the outset of the trials involving high concentrations of Cu indicating that Community Tolerance was increased due to direct mortality of the sensitive species. [30] The in situ study of Bérard & Benninghoff, (2001) [31] in enclosures repeated over several years in the lake of Geneva, showed that the tolerance of phytoplankton to the herbicide atrazine (photosynthesis inhibitor) varied according to the seasons during which the experiment was carried out. These changes in tolerance for the same toxicant and at the same concentration (10 μg/L) were probably linked to the initial compositions of the algal and cyanobacterial communities and to environmental factors associated with seasonal parameters (temperature, light, nutrients, etc.). PICT studies on large spatial scales are rare and difficult to conduct, note this European study by Blanck et al (2003) [32] on zinc tolerance in river periphyton.

The use of PICT in an in situ fashion is not limited to aquatic systems. Studies on soil microbial communities have been conducted in industrial and agricultural contexts [33] (see the review of Boivin et al., 2002). [34] Thus, for examples in the context of industrial contamination a study involving 2,4,6-Trinitrotoluene utilized respirometric techniques to measure Pollution-Induced Community Tolerance in soil microbial communities in response to the presence of TNT. The results of this study further corroborate the PICT Theory, in that treatments with long-term exposure to TNT had a larger proportion of TNT-resistant bacteria than soils with low levels of TNT. [35] This PICT caused by TNT was also present in another study. [36] Microrespirometry measurements carried out on soil samples taken along three transects have highlighted the tolerance to Pb in a site bordering a lead smelter with long-term polymetallic contamination dominated by Pb. The PICT established causal relationships between Pb and its effect on microbial communities by considering the history of environmental contamination at the community level. Furthermore, a positive correlation between community metabolic quotient and PICT suggested that the acquisition of Pb stress-induced tolerance would have resulted in a higher energetic cost for microbial communities to cope with metal toxicity. [37] Other studies have highlighted in various contexts, this cost of contaminant-induced tolerance. [38] [39] [12] In the context of agricultural contamination, Bérard et al. (2004) [40] validated the PICT tool (by measuring photosynthetic activity) for atrazine tolerance on edaphic microalgae, comparing soils of conventionally and organically farmed corn fields. Changes in taxonomic structure of diatom communities sampled from soils under both types of farming practices, as well as nanocosm experiments, confirmed the selective effect of atrazine. In terrestrial environment, the PICT method is widely applied to metal contamination and since 2010, to antibiotic tolerance in interaction with metal contamination. [41]

Ideally, pollution-induced community tolerance can be assessed in the field by using a representative sample of the natural community in response to environmental contamination. However, this is not always the case, which is why laboratory studies are necessary supplements to properly assess PICT.

Experimental studies

Experimental investigation of PICT is perform to eliminate factors other than pollution that may affect community structure and ecophysiology, [1] or on the contrary to study them (by controlling them). [42] [43] [44] [45] Much work has been done in controlled systems (see reviews by Blanck, 2002 [15] and Tlili et al. 2016 [2] ). They can be conducted in conjunction with field work, as in the study by Blanck and Dahl (1996). In this study, the results from laboratory acute toxicity tests of TBT on periphyton corroborated the results from the field study, supporting the conclusion that toxicity to periphyton resulted from TBT pollution at the site under investigation. [21] The results from acute toxicity tests can thus help determine whether the effect identified is due to a specific contaminant. Bérard et al. (2003) [46] used experimental systems of increasing complexity associated with monitoring of sites in Lake Geneva more or less contaminated by Irgarol (antifouling inhibitor of photosynthesis), and crossed the results of ecotoxicity of strains isolated from these sites and from non-contaminated control sites with experiments in nanocosms and PICT measurements. This work highlighted the high toxicity of Irgarol (compared to atrazine having the same site of action, and presenting a co-tolerance) on periphyton and phytoplankton and its potential for selection pressure at existing concentrations in the lake.

The PICT methodology

There are a variety of methods for laboratory testing PICT, but a general format includes sampling, a bioassay, and an analysis of community structure.

Samples can be collected on artificial or natural substrata, either in situ or in the laboratory. [47] There must be a series of samples exposed to different concentrations of contaminant and a control sample. In situ sampling involves setting up a sampling device in an aquatic ecosystem and allowing it to colonize for some time (e.g. a couple of weeks). One example is the diatometer, a device that is deployed in the water that becomes colonized by diatoms, and then is removed for analysis. [48] In situ sampling devices are set up at increasing distances from the pollution source in the case of point source pollution. The samples thus represent a gradient in contaminant concentration, assuming that the contaminant becomes more dilute with increasing distance from the point source. An example of laboratory sampling was used in a study by Schmitt-Jansen and Altenburger (2005). For 14 days communities were allowed to establish on discs set up in laboratory aquariums which were continuously mixed and inoculated with algae from a pond. The aquariums were dosed with different concentrations of herbicide to get a gradient of long-term (14-day) contaminant exposures. Once a week the aquarium water was completely replaced and re-dosed with herbicide. [49] Terrestrial studies pose other difficulties because it is difficult to use colonization systems by the communities investigated. [50] Generally one samples the soil with its intrinsic heterogeneity and components other than microorganisms (minerals, organics ..), which increases measurement difficulties and biases related to contaminant bioavailability. [51]

A bioassay is conducted on the samples to test for correlation between tolerance and long-term contaminant exposure. First, samples are exposed to different concentrations of contaminant. Then an endpoint is measured to determine the toxic effect on the sample organisms. The results from these measurements are used to produce a dose-response curve and an EC50. [49] Both Blanck (1996) and Schmitt-Jansen and Altenburger (2005) photosynthesis as their endpoint. [21] [49] Since the work of Blanck et al. (1988), other endpoints have been tested such as: induced fluorescence, [52] PAM fluorimetry, [53] [54] [42] leucine incorporation and eco-plates, [55] [56] [57] microbial respiration, [58] [38] [35] [59] enzyme activities, [60] [61] [42] potential ammonium oxidation assay [57] ... In order to use the PICT method in biomonitoring and environmental risk assessment, it is necessary to advance in the standardization of these bioassays, both for the sampling of the tested communities, but also for the bioassays themselves. [62] [63] [2]

Community structure of the samples is analyzed to check for a correlation between species prevalence and long-term contaminant exposure. Samples are taxonomically classified to determine the composition and species diversity of the communities that established over the long term exposures. The results are compared to the concentration of contaminant in the long-term exposure to conclude if a relationship was found in the study. [49] Recent developments in microbial ecology using molecular biology [64] [65] [66] and "omics" methods, [67] chemotaxonomy methods, [22] functional diversity measurements, [58] [38] biological trait and biological interaction network approaches, [68] are varied, complementary and promising ecological tools to address PICT selection pressure. [2]

Related Research Articles

<span class="mw-page-title-main">Biofilm</span> Aggregation of bacteria or cells on a surface

A biofilm is a syntrophic community of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular polymeric substances (EPSs). The cells within the biofilm produce the EPS components, which are typically a polymeric combination of extracellular polysaccharides, proteins, lipids and DNA. Because they have a three-dimensional structure and represent a community lifestyle for microorganisms, they have been metaphorically described as "cities for microbes".

Contamination is the presence of a constituent, impurity, or some other undesirable element that renders something unsuitable, unfit or harmful for physical body, natural environment, workplace, etc.

<span class="mw-page-title-main">Bioremediation</span> Process used to treat contaminated media such as water and soil

Bioremediation broadly refers to any process wherein a biological system, living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluents etc., in natural or artificial settings. The natural ability of organisms to adsorb, accumulate, and degrade common and emerging pollutants has attracted the use of biological resources in treatment of contaminated environment. In comparison to conventional physicochemical treatment methods bioremediation may offer advantages as it aims to be sustainable, eco-friendly, cheap, and scalable.

<span class="mw-page-title-main">Polycyclic aromatic hydrocarbon</span> Hydrocarbon composed of multiple aromatic rings

A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings, and the three-ring compounds anthracene and phenanthrene. PAHs are uncharged, non-polar and planar. Many are colorless. Many of them are found in coal and in oil deposits, and are also produced by the incomplete combustion of organic matter—for example, in engines and incinerators or when biomass burns in forest fires.

<span class="mw-page-title-main">Aquatic toxicology</span> Study of manufactured products on aquatic organisms

Aquatic toxicology is the study of the effects of manufactured chemicals and other anthropogenic and natural materials and activities on aquatic organisms at various levels of organization, from subcellular through individual organisms to communities and ecosystems. Aquatic toxicology is a multidisciplinary field which integrates toxicology, aquatic ecology and aquatic chemistry.

<span class="mw-page-title-main">Phytoremediation</span> Decontamination technique using living plants

Phytoremediation technologies use living plants to clean up soil, air and water contaminated with hazardous contaminants. It is defined as "the use of green plants and the associated microorganisms, along with proper soil amendments and agronomic techniques to either contain, remove or render toxic environmental contaminants harmless". The term is an amalgam of the Greek phyto (plant) and Latin remedium. Although attractive for its cost, phytoremediation has not been demonstrated to redress any significant environmental challenge to the extent that contaminated space has been reclaimed.

<span class="mw-page-title-main">Atrazine</span> Herbicide

Atrazine is a chlorinated herbicide of the triazine class. It is used to prevent pre-emergence broadleaf weeds in crops such as maize (corn), soybean and sugarcane and on turf, such as golf courses and residential lawns. Atrazine's primary manufacturer is Syngenta and it is one of the most widely used herbicides in the United States, Canadian, and Australian agriculture. Its use was banned in the European Union in 2004, when the EU found groundwater levels exceeding the limits set by regulators, and Syngenta could not show that this could be prevented nor that these levels were safe.

<span class="mw-page-title-main">Bioindicator</span> Species that reveals the status of an environment

A bioindicator is any species or group of species whose function, population, or status can reveal the qualitative status of the environment. The most common indicator species are animals. For example, copepods and other small water crustaceans that are present in many water bodies can be monitored for changes that may indicate a problem within their ecosystem. Bioindicators can tell us about the cumulative effects of different pollutants in the ecosystem and about how long a problem may have been present, which physical and chemical testing cannot.

<span class="mw-page-title-main">Periphyton</span> Bioindicators attached to submerged surfaces in most aquatic ecosystems

Periphyton is a complex mixture of algae, cyanobacteria, heterotrophic microbes, and detritus that is attached to submerged surfaces in most aquatic ecosystems. The related term Aufwuchs refers to the collection of small animals and plants that adhere to open surfaces in aquatic environments, such as parts of rooted plants.

<span class="mw-page-title-main">Ecotoxicology</span>

Ecotoxicology is the study of the effects of toxic chemicals on biological organisms, especially at the population, community, ecosystem, and biosphere levels. Ecotoxicology is a multidisciplinary field, which integrates toxicology and ecology.

<span class="mw-page-title-main">Mycoremediation</span> Process of using fungi to degrade or sequester contaminants in the environment

Mycoremediation is a form of bioremediation in which fungi-based remediation methods are used to decontaminate the environment. Fungi have been proven to be a cheap, effective and environmentally sound way for removing a wide array of contaminants from damaged environments or wastewater. These contaminants include heavy metals, organic pollutants, textile dyes, leather tanning chemicals and wastewater, petroleum fuels, polycyclic aromatic hydrocarbons, pharmaceuticals and personal care products, pesticides and herbicides in land, fresh water, and marine environments.

<span class="mw-page-title-main">Soil contamination</span> Pollution of land by human-made chemicals or other alteration

Soil contamination, soil pollution, or land pollution as a part of land degradation is caused by the presence of xenobiotic (human-made) chemicals or other alteration in the natural soil environment. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste. The most common chemicals involved are petroleum hydrocarbons, polynuclear aromatic hydrocarbons, solvents, pesticides, lead, and other heavy metals. Contamination is correlated with the degree of industrialization and intensity of chemical substance. The concern over soil contamination stems primarily from health risks, from direct contact with the contaminated soil, vapour from the contaminants, or from secondary contamination of water supplies within and underlying the soil. Mapping of contaminated soil sites and the resulting clean ups are time-consuming and expensive tasks, and require expertise in geology, hydrology, chemistry, computer modelling, and GIS in Environmental Contamination, as well as an appreciation of the history of industrial chemistry.

<span class="mw-page-title-main">Food contaminant</span> Harmful substance in food

A food contaminant is a harmful chemical or microorganism present in food, which can cause illness to the consumer.

<span class="mw-page-title-main">Environmental toxicology</span> Multidisciplinary field of science

Environmental toxicology is a multidisciplinary field of science concerned with the study of the harmful effects of various chemical, biological and physical agents on living organisms. Ecotoxicology is a subdiscipline of environmental toxicology concerned with studying the harmful effects of toxicants at the population and ecosystem levels.

<span class="mw-page-title-main">Macrobenthos</span> Organisms that live at the bottom of a water column

Macrobenthos consists of the organisms that live at the bottom of a water column and are visible to the naked eye. In some classification schemes, these organisms are larger than 1 mm; in another, the smallest dimension must be at least 0.5 mm. They include polychaete worms, pelecypods, anthozoans, echinoderms, sponges, ascidians, crustaceans.

<span class="mw-page-title-main">Environmental impact of mining</span> Environmental problems from uncontrolled mining

Environmental impact of mining can occur at local, regional, and global scales through direct and indirect mining practices. Mining can cause erosion, sinkholes, loss of biodiversity, or the contamination of soil, groundwater, and surface water by chemicals emitted from mining processes. These processes also affect the atmosphere through carbon emissions which contributes to climate change.

<span class="mw-page-title-main">Redox gradient</span> Variation of the redox potential with distance (or depth)

A redox gradient is a series of reduction-oxidation (redox) reactions sorted according to redox potential. The redox ladder displays the order in which redox reactions occur based on the free energy gained from redox pairs. These redox gradients form both spatially and temporally as a result of differences in microbial processes, chemical composition of the environment, and oxidative potential. Common environments where redox gradients exist are coastal marshes, lakes, contaminant plumes, and soils.

<span class="mw-page-title-main">Plastisphere</span> Plastic debris suspended in water and organisms which live in it

The plastisphere is a human-made ecosystem consisting of organisms able to live on plastic waste. Plastic marine debris, most notably microplastics, accumulates in aquatic environments and serves as a habitat for various types of microorganisms, including bacteria and fungi. As of 2022, an estimated 51 trillion microplastics are floating in the surface water of the world's oceans. A single 5mm piece of plastic can host 1,000s of different microbial species. Some marine bacteria can break down plastic polymers and use the carbon as a source of energy.

Evolutionary toxicology is an emerging field of science focusing on shifts in population genetics caused by the introduction of contaminants to the environment. Research in evolutionary toxicology combines aspects of ecotoxicology, population genetics, evolutionary biology, and conservation genetics to form a unified field investigating genome and population wide changes in genetic diversity, allelic frequency, gene flow, and mutation rates. Each of these areas of investigation is characterized as one of four central tenets to the field, proposed and described in detail by John Bickham in 2011.

References

  1. 1 2 3 4 5 Blanck, Hans; Wangberg, S. A.; Molander, S. (1988). "Pollution-Induced Community Tolerance—A New Ecotoxicological Tool". Functional Testing of Aquatic Biota for Estimating Hazards of Chemicals. pp. 219–230. doi:10.1520/STP26265S. ISBN   978-0-8031-1165-3.
  2. 1 2 3 4 5 6 Tlili, Ahmed; Berard, Annette; Blanck, Hans; Bouchez, Agnes; Cássio, Fernanda; Eriksson, Karl Martin; Morin, Soizic; Montuelle, Bernard; Navarro, Enrique; Pascoal, Cláudia; Pesce, Stephane (2016). "Pollution-induced community tolerance (PICT): towards an ecologically relevant risk assessment of chemicals in aquatic systems". Freshwater Biology. 61 (12): 2141–2151. doi: 10.1111/fwb.12558 . ISSN   1365-2427.
  3. 1 2 3 Rotter, Stefanie; Sans-Piche, Frederic; Streck, Georg; Altenburger, Rolf; Schmitt-Jansen, Mechthild (2011). "Active Bio-monitoring of Contamination in Aquatic Systems—An in Situ Translocation Experiment Applying the PICT Concept". Aquatic Toxicology. 101 (1): 228–236. doi:10.1016/j.aquatox.2010.10.001. PMID   21087798.
  4. Miner, Benjamin G., Sonia E. Sultan, Steven G. Morgan, Dianna K. Padilla, and Rick A. Relyea. 12 December 2005. "Ecological Consequences of Phenotypic Plasticity." Elsevier. Trends in Ecology and Evolution. 20 (12): 685–692). http://bama.ua.edu/~rlearley/Miner_2005.pdf.
  5. 1 2 Darwin, Charles. 1859. "Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life." London: John Murray. 1st Edition. http://graphics8.nytimes.com/packages/images/nytint/docs/charles-darwin-on-the-origin-of-species/original.pdf
  6. 1 2 Blanck, Hans. 22 September 2010. “A Critical Review of Procedures and Approaches Used for Assessing Pollution-Induced Community Tolerance (PICT) in Biotic Communities, Human and Ecological Risk Assessment.” Human and Ecological Risk Assessment. 8 (5): 1003–1034. http://www.tandfonline.com/doi/pdf/10.1080/1080-700291905792.
  7. Morin, Soizic; Lambert, Anne Sophie; Rodriguez, Elena Planes; Dabrin, Aymeric; Coquery, Marina; Pesce, Stephane (2017). "Changes in copper toxicity towards diatom communities with experimental warming". Journal of Hazardous Materials. 334: 223–232. doi:10.1016/j.jhazmat.2017.04.016. PMID   28415000.
  8. Guasch, Helena; Artigas, Joan; Bonet, Berta; Bonnineau, Chloe; Canals, Oriol; Corcoll, Natàlia; Foulquier, Arnaud; López-Doval, Julio; Kim-Tiam, Sandra (2016), "The Use of Biofilms to Assess the Effects of Chemicals on Freshwater Ecosystems", Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment, Caister Academic Press, pp. 125–144, doi: 10.21775/9781910190173.07 , ISBN   978-1-910190-17-3
  9. Oguma, Andrew Y.; Klerks, Paul L. (2017). "Pollution-induced community tolerance in benthic macroinvertebrates of a mildly lead-contaminated lake". Environmental Science and Pollution Research. 24 (23): 19076–19085. doi:10.1007/s11356-017-9553-9. ISSN   0944-1344. PMID   28660509. S2CID   23307540.
  10. Millward, Rod N.; Grant, Alastair (1995). "Assessing the impact of copper on nematode communities from a chronically metal-enriched estuary using pollution-induced community tolerance". Marine Pollution Bulletin. 30 (11): 701–706. doi:10.1016/0025-326x(95)00053-p. ISSN   0025-326X.
  11. Knopper, L. D.; Siciliano, S. D. (2002-07-01). "A Hypothetical Application of the Pollution-Induced Community Tolerance Concept in Megafaunal Communities Found at Contaminated Sites". Human and Ecological Risk Assessment. 8 (5): 1057–1066. doi:10.1080/1080-700291905819. ISSN   1080-7039. S2CID   84169130.
  12. 1 2 3 Tlili, Ahmed; Maréchal, Marjorie; Bérard, Annette; Volat, Bernadette; Montuelle, Bernard (2011). "Enhanced co-tolerance and co-sensitivity from long-term metal exposures of heterotrophic and autotrophic components of fluvial biofilms". Science of the Total Environment. 409 (20): 4335–4343. Bibcode:2011ScTEn.409.4335T. doi:10.1016/j.scitotenv.2011.07.026. PMID   21840570.
  13. Knauer, Katja; Leimgruber, Andrea; Hommen, Udo; Knauert, Stefanie (2010). "Co-tolerance of phytoplankton communities to photosynthesis II inhibitors". Aquatic Toxicology. 96 (4): 256–263. doi:10.1016/j.aquatox.2009.11.001. PMID   20004984.
  14. Schmitt, Heike; Martinali, Bennie; Van Beelen, Patrick; Seinen, Willem (2006). "On the Limits of Toxicant-Induced Tolerance Testing: Cotolerance and Response Variation of Antibiotic Effects". Environmental Toxicology and Chemistry. 25 (7): 1961–1968. doi:10.1897/05-149r.1. hdl: 10029/6762 . ISSN   0730-7268. PMID   16833161. S2CID   26803746.
  15. 1 2 Blanck, Hans (2002). "A Critical Review of Procedures and Approaches Used for Assessing Pollution-Induced Community Tolerance (PICT) in Biotic Communities". Human and Ecological Risk Assessment. 8 (5): 1003–1034. doi:10.1080/1080-700291905792. ISSN   1080-7039. S2CID   85096399.
  16. Traoré, Harouna; Crouzet, Olivier; Mamy, Laure; Sireyjol, Christine; Rossard, Virginie; Servien, Rémi; Latrille, Eric; Martin-Laurent, Fabrice; Patureau, Dominique; Benoit, Pierre (2017-12-02). "Clustering pesticides according to their molecular properties, fate, and effects by considering additional ecotoxicological parameters in the TyPol method". Environmental Science and Pollution Research. 25 (5): 4728–4738. doi:10.1007/s11356-017-0758-8. ISSN   0944-1344. PMID   29197062. S2CID   3453316.
  17. Campillo-Cora, Claudia (2021-04-01). "Bacterial community tolerance to Cu in soils with geochemical baseline concentrations (GBCs) of heavy metals: Importance for pollution induced community tolerance (PICT) determinations using the leucine incorporation method". Soil Biology and Biochemistry. 155: 108157. doi: 10.1016/j.soilbio.2021.108157 . hdl: 11093/2658 . ISSN   0038-0717. S2CID   233580066.
  18. Pesce, Stéphane; Morin, Soizic; Lissalde, Sophie; Montuelle, Bernard; Mazzella, Nicolas (2011). "Combining polar organic chemical integrative samplers (POCIS) with toxicity testing to evaluate pesticide mixture effects on natural phototrophic biofilms". Environmental Pollution. 159 (3): 735–741. doi:10.1016/j.envpol.2010.11.034. ISSN   0269-7491. PMID   21177009.
  19. Foulquier, Arnaud; Morin, Soizic; Dabrin, Aymeric; Margoum, Christelle; Mazzella, Nicolas; Pesce, Stéphane (2015). "Effects of mixtures of dissolved and particulate contaminants on phototrophic biofilms: new insights from a PICT approach combining toxicity tests with passive samplers and model substances". Environmental Science and Pollution Research. 22 (6): 4025–4036. doi:10.1007/s11356-014-3289-6. ISSN   0944-1344. PMID   25037097. S2CID   8786682.
  20. Tlili, Ahmed; Corcoll, Natàlia; Arrhenius, Åsa; Backhaus, Thomas; Hollender, Juliane; Creusot, Nicolas; Wagner, Bettina; Behra, Renata (2020-09-01). "Tolerance Patterns in Stream Biofilms Link Complex Chemical Pollution to Ecological Impacts". Environmental Science & Technology. 54 (17): 10745–10753. Bibcode:2020EnST...5410745T. doi:10.1021/acs.est.0c02975. ISSN   0013-936X. PMID   32706249. S2CID   220731064.
  21. 1 2 3 Blanck, Hans; Dahl, Bjorn (1996). "Pollution-induced Community Tolerance (PICT) in Marineperiphyton in Agradient of Tri-n-butyltin (TBT) Contamination". Aquatic Toxicology. 35 (1): 59–77. doi:10.1016/0166-445X(96)00007-0.
  22. 1 2 Dorigo, U; Leboulanger, C; Bérard, A; Bouchez, A; Humbert, JF; Montuelle, B (2007). "Lotic biofilm community structure and pesticide tolerance along a contamination gradient in a vineyard area". Aquatic Microbial Ecology. 50: 91–102. doi: 10.3354/ame01133 . ISSN   0948-3055.
  23. Montuelle, B.; Dorigo, U.; Bérard, A.; Volat, B.; Bouchez, A.; Tlili, A.; Gouy, V.; Pesce, S. (2010). "The periphyton as a multimetric bioindicator for assessing the impact of land use on rivers: an overview of the Ardières-Morcille experimental watershed (France)". Hydrobiologia. 657 (1): 123–141. doi:10.1007/s10750-010-0105-2. ISSN   0018-8158. S2CID   24645069.
  24. Pesce, Stéphane; Margoum, Christelle; Montuelle, Bernard (2010). "In situ relationships between spatio-temporal variations in diuron concentrations and phototrophic biofilm tolerance in a contaminated river". Water Research. 44 (6): 1941–1949. doi:10.1016/j.watres.2009.11.053. PMID   20031187.
  25. Dorigo, Ursula; Berard, Annette; Rimet, Frédéric; Bouchez, Agnès; Montuelle, Bernard (2010). "In situ assessment of periphyton recovery in a river contaminated by pesticides". Aquatic Toxicology. 98 (4): 396–406. doi:10.1016/j.aquatox.2010.03.011. ISSN   0166-445X. PMID   20398950.
  26. Pesce, Stéphane; Lissalde, Sophie; Lavieille, Delphine; Margoum, Christelle; Mazzella, Nicolas; Roubeix, Vincent; Montuelle, Bernard (2010). "Evaluation of single and joint toxic effects of diuron and its main metabolites on natural phototrophic biofilms using a pollution-induced community tolerance (PICT) approach". Aquatic Toxicology. 99 (4): 492–499. doi:10.1016/j.aquatox.2010.06.006. ISSN   0166-445X. PMID   20638141.
  27. Tlili, A; Dorigo, U; Montuelle, B; Margoum, C; Carluer, N; Gouy, V; Bouchez, A; Bérard, A (2008). "Responses of chronically contaminated biofilms to short pulses of diuronAn experimental study simulating flooding events in a small river". Aquatic Toxicology. 87 (4): 252–263. doi:10.1016/j.aquatox.2008.02.004. ISSN   0166-445X. PMID   18387680.
  28. Pesce, Stephane (2016-04-01). "Pollution-induced community tolerance for in situ assessment of recovery in river microbial communities following the ban of the herbicide diuron". Agriculture, Ecosystems & Environment. 221: 79–86. doi:10.1016/j.agee.2016.01.009. ISSN   0167-8809.
  29. Larras, Floriane; Rimet, Frédéric; Gregorio, Vincent; Bérard, Annette; Leboulanger, Christophe; Montuelle, Bernard; Bouchez, Agnès (2016). "Pollution-induced community tolerance (PICT) as a tool for monitoring Lake Geneva long-term in situ ecotoxic restoration from herbicide contamination". Environmental Science and Pollution Research. 23 (5): 4301–4311. doi:10.1007/s11356-015-5302-0. ISSN   0944-1344. PMID   26335527. S2CID   21264655.
  30. Gustavson, Kim; Wangberg, Sten-Ake (1995). "Toleranceinduction and Succession in Microalgae Communities Exposed to Copper and Atrazine". Aquatic Toxicology. 32 (4): 283–302. doi:10.1016/0166-445X(95)00002-L.
  31. Bérard, Annette; Benninghoff, Christophe (2001). "Pollution-induced community tolerance (PICT) and seasonal variations in the sensitivity of phytoplankton to atrazine in nanocosms". Chemosphere. 45 (4–5): 427–437. Bibcode:2001Chmsp..45..427B. doi:10.1016/s0045-6535(01)00063-7. ISSN   0045-6535. PMID   11680738.
  32. Blanck, H.; Admiraal, W.; Cleven, R. F. M. J.; Guasch, H.; van den Hoop, M. A. G. T.; Ivorra, N.; Nyström, B.; Paulsson, M.; Petterson, R. P.; Sabater, S.; Tubbing, G. M. J. (2003-01-01). "Variability in Zinc Tolerance, Measured as Incorporation of Radio-Labeled Carbon Dioxide and Thymidine, in Periphyton Communities Sampled from 15 European River Stretches". Archives of Environmental Contamination and Toxicology. 44 (1): 17–29. doi:10.1007/s00244-002-1258-4. ISSN   0090-4341. PMID   12434215. S2CID   32792346.
  33. Zabaloy, María C.; Garland, Jay L.; Gomez, Marisa A. (2010). "Assessment of the impact of 2,4-dichlorophenoxyacetic acid (2,4-D) on indigenous herbicide-degrading bacteria and microbial community function in an agricultural soil". Applied Soil Ecology. 46 (2): 240–246. doi:10.1016/j.apsoil.2010.08.006. hdl: 11336/16949 .
  34. Boivin MEY, Breure AM, Posthuma L, et al. 2002. Determination of field effects of contaminants Significance of pollution-induced community tolerance. Human Ecol Risk Assess 8
  35. 1 2 Gong, Ping; Gasparrini, Pietro; Rho, Denis; Hawari, Jalal; Thiboutot, Sonia; Ampleman, Guy; Sunahara, Geofrrey I. (2000). "An in Situ Respirometric Technique to Measure Pollution-Induced Microbial Community Tolerance in Soils Contaminated with 2,4,6-Trinitrotoluene". Ecotoxicology and Environmental Safety. 47 (1): 96–103. doi:10.1006/eesa.2000.1934. PMID   10993709.
  36. Siciliano, Steven D.; Gong, Ping; Sunahara, Geoffrey I.; Greer, Charles W. (2000). "Assessment of 2,4,6-Trinitrotoluene Toxicity in Field Soils by Pollution-Induced Community Tolerance, Denaturing Gradient Gel Electrophoresis, and Seed Germination Assay". Environmental Toxicology and Chemistry. 19 (8): 2154–160. doi:10.1002/etc.5620190827. S2CID   86140987.
  37. Bérard, Annette; Capowiez, Line; Mombo, Stéphane; Schreck, Eva; Dumat, Camille; Deola, Frédéric; Capowiez, Yvan (2016). "Soil microbial respiration and PICT responses to an industrial and historic lead pollution: a field study". Environmental Science and Pollution Research. 23 (5): 4271–4281. doi:10.1007/s11356-015-5089-z. ISSN   0944-1344. PMID   26233741. S2CID   9751342.
  38. 1 2 3 Bérard, Annette; Mazzia, Christophe; Sappin-Didier, Valérie; Capowiez, Line; Capowiez, Yvan (2014). "Use of the MicroResp™ method to assess Pollution-Induced Community Tolerance in the context of metal soil contamination". Ecological Indicators. 40: 27–33. doi:10.1016/j.ecolind.2013.12.024. ISSN   1470-160X.
  39. Wakelin, Steven; Gerard, Emily; Black, Amanda; Hamonts, Kelly; Condron, Leo; Yuan, Tong; van Nostrand, Joy; Zhou, Jizhong; O'Callaghan, Maureen (2014). "Mechanisms of pollution induced community tolerance in a soil microbial community exposed to Cu". Environmental Pollution. 190: 1–9. doi:10.1016/j.envpol.2014.03.008. ISSN   0269-7491. PMID   24686114.
  40. Bérard, A.; Rimet, F.; Capowiez, Y.; Leboulanger, C. (2004). "Procedures for Determining the Pesticide Sensitivity of Indigenous Soil Algae: A Possible Bioindicator of Soil Contamination?". Archives of Environmental Contamination and Toxicology. 46 (1): 24–31. doi:10.1007/s00244-003-2147-1. ISSN   0090-4341. PMID   15025161. S2CID   34098540.
  41. Berg, Jeanette; Thorsen, Maja K.; Holm, Peter E.; Jensen, John; Nybroe, Ole; Brandt, Kristian K. (2010-11-15). "Cu Exposure under Field Conditions Coselects for Antibiotic Resistance as Determined by a Novel Cultivation-Independent Bacterial Community Tolerance Assay". Environmental Science & Technology. 44 (22): 8724–8728. Bibcode:2010EnST...44.8724B. doi:10.1021/es101798r. ISSN   0013-936X. PMID   20964403.
  42. 1 2 3 Tlili, Ahmed; Bérard, Annette; Roulier, Jean-Louis; Volat, Bernadette; Montuelle, Bernard (2010). "PO43− dependence of the tolerance of autotrophic and heterotrophic biofilm communities to copper and diuron". Aquatic Toxicology. 98 (2): 165–177. doi:10.1016/j.aquatox.2010.02.008. ISSN   0166-445X. PMID   20197204.
  43. Lambert, Anne Sophie; Dabrin, Aymeric; Foulquier, Arnaud; Morin, Soizic; Rosy, Christophe; Coquery, Marina; Pesce, Stéphane (2017). "Influence of temperature in pollution-induced community tolerance approaches used to assess effects of copper on freshwater phototrophic periphyton". Science of the Total Environment. 607–608: 1018–1025. Bibcode:2017ScTEn.607.1018L. doi:10.1016/j.scitotenv.2017.07.035. PMID   28724220. S2CID   352982.
  44. Lambert, Anne-Sophie; Morin, Soizic; Artigas, Joan; Volat, Bernadette; Coquery, Marina; Neyra, Marc; Pesce, Stéphane (2012). "Structural and functional recovery of microbial biofilms after a decrease in copper exposure: Influence of the presence of pristine communities". Aquatic Toxicology. 109: 118–126. doi:10.1016/j.aquatox.2011.12.006. PMID   22210500.
  45. Pesce, Stéphane; Lambert, Anne-Sophie; Morin, Soizic; Foulquier, Arnaud; Coquery, Marina; Dabrin, Aymeric (2018-07-02). "Experimental Warming Differentially Influences the Vulnerability of Phototrophic and Heterotrophic Periphytic Communities to Copper Toxicity". Frontiers in Microbiology. 9: 1424. doi: 10.3389/fmicb.2018.01424 . ISSN   1664-302X. PMC   6036129 . PMID   30013533.
  46. Bérard, A.; Dorigo, U.; Mercier, I.; Becker-van Slooten, K.; Grandjean, D.; Leboulanger, C. (2003). "Comparison of the ecotoxicological impact of the triazines Irgarol 1051 and atrazine on microalgal cultures and natural microalgal communities in Lake Geneva". Chemosphere. 53 (8): 935–944. Bibcode:2003Chmsp..53..935B. doi:10.1016/s0045-6535(03)00674-x. ISSN   0045-6535. PMID   14505716.
  47. Blanck, Hans. 1985. “A simple, community level, ecotoxicological test system using samples of periphyton”. Hydrobiologia. 124: 251–261.
  48. “Tools of a Scientist”. Urban Rivers Awareness. 2004.
  49. 1 2 3 4 Schmitt-Jansen, M.; Altenburger, R. (2005). "Predicting and observing responses of algal communities to photosystem II-herbicide exposure using pollution-induced community tolerance and species-sensitivity distributions". Environmental Toxicology and Chemistry. 24 (2): 304–312. doi:10.1897/03-647.1. PMID   15719989. S2CID   22728077.
  50. Pipe, Annette E.; Cullimore, D. Roy (1980). "An implanted slide technique for examining the effects of the herbicide diuron on soil algae". Bulletin of Environmental Contamination and Toxicology. 24 (1): 306–312. doi:10.1007/BF01608114. ISSN   0007-4861. PMID   7362912. S2CID   29646408.
  51. Lekfeldt, Jonas Duus Stevens; Magid, Jakob; Holm, Peter E.; Nybroe, Ole; Brandt, Kristian Koefoed (2014). "Evaluation of the leucine incorporation technique for detection of pollution-induced community tolerance to copper in a long-term agricultural field trial with urban waste fertilizers". Environmental Pollution. 194: 78–85. doi:10.1016/j.envpol.2014.07.013. ISSN   0269-7491. PMID   25094060.
  52. Seguin, Florence; Le Bihan, Frédéric; Leboulanger, Christophe; Bérard, Annette (2002). "A risk assessment of pollution: induction of atrazine tolerance in phytoplankton communities in freshwater outdoor mesocosms, using chlorophyll fluorescence as an endpoint". Water Research. 36 (13): 3227–3236. doi:10.1016/s0043-1354(02)00013-1. ISSN   0043-1354. PMID   12188119.
  53. Dorigo U,Leboulanger C. A PAM fluorescence-based method for assessing the effects of photosystem II herbicides on freshwater periphyton.J Appl Phycol 2001;13:463–534.
  54. Schmitt-Jansen, Mechthild; Altenburger, Rolf (2008). "Community-level microalgal toxicity assessment by multiwavelength-excitation PAM fluorometry". Aquatic Toxicology. 86 (1): 49–58. doi:10.1016/j.aquatox.2007.10.001. ISSN   0166-445X. PMID   18036674.
  55. Demoling, Louise Aldén; Bååth, Erland; Greve, Gerdit; Wouterse, Marja; Schmitt, Heike (2009). "Effects of sulfamethoxazole on soil microbial communities after adding substrate". Soil Biology and Biochemistry. 41 (4): 840–848. doi:10.1016/j.soilbio.2009.02.001. ISSN   0038-0717.
  56. Rutgers, Michiel; Breure, Anton M. (1999). "Risk Assessment, Microbial Communities, and Pollution-Induced Community Tolerance". Human and Ecological Risk Assessment. 5 (4): 661–670. doi:10.1080/10807039.1999.9657730. ISSN   1080-7039.
  57. 1 2 Gong, Ping; Siciliano, Steven D.; Srivastava, Sonali; Greer, Charles W.; Sunahara, Geoffrey I. (2002). "Assessment of Pollution-Induced Microbial Community Tolerance to Heavy Metals in Soil Using Ammonia-Oxidizing Bacteria and Biolog Assay". Human and Ecological Risk Assessment. 8 (5): 1067–1081. doi:10.1080/1080-700291905828. ISSN   1080-7039. S2CID   84525240.
  58. 1 2 Tlili, Ahmed; Marechal, Marjorie; Montuelle, Bernard; Volat, Bernadette; Dorigo, Ursula; Bérard, Annette (2011). "Use of the MicroResp™ method to assess pollution-induced community tolerance to metals for lotic biofilms". Environmental Pollution. 159 (1): 18–24. doi:10.1016/j.envpol.2010.09.033. PMID   20961674.
  59. wakelin, Steven (2014). "Mechanisms of pollution induced community tolerance in a soil microbial community exposed to Cu". Environmental Pollution. 190: 1–9. doi:10.1016/j.envpol.2014.03.008. ISSN   0269-7491. PMID   24686114.
  60. Fechner, Lise C.; Dufour, Marine; Gourlay-Francé, Catherine (2012). "Pollution-induced community tolerance of freshwater biofilms: measuring heterotrophic tolerance to Pb using an enzymatic toxicity test". Ecotoxicology. 21 (8): 2123–2131. doi:10.1007/s10646-012-0964-6. ISSN   0963-9292. PMID   22729786. S2CID   27342167.
  61. Bonnineau, Chloé; Tlili, Ahmed; Faggiano, Leslie; Montuelle, Bernard; Guasch, Helena (2013). "The use of antioxidant enzymes in freshwater biofilms: Temporal variability vs. toxicological responses". Aquatic Toxicology. 136–137: 60–71. doi:10.1016/j.aquatox.2013.03.009. ISSN   0166-445X. PMID   23643725.
  62. Lambert, Anne Sophie; Pesce, Stéphane; Foulquier, Arnaud; Gahou, Josiane; Coquery, Marina; Dabrin, Aymeric (2015). "Improved short-term toxicity test protocol to assess metal tolerance in phototrophic periphyton: toward standardization of PICT approaches". Environmental Science and Pollution Research. 22 (6): 4037–4045. doi:10.1007/s11356-014-3505-4. ISSN   0944-1344. PMID   25167827. S2CID   207272680.
  63. Vázquez-Blanco, Raquel; Arias-Estévez, Manuel; Bååth, Erland; Fernández-Calviño, David (2021). "Comparing the effect of Cu-based fungicides and pure Cu salts on microbial biomass, microbial community structure and bacterial community tolerance to Cu". Journal of Hazardous Materials. 409: 124960. doi:10.1016/j.jhazmat.2020.124960. hdl: 11093/6950 . PMID   33422757. S2CID   231575006.
  64. Salis, R. K.; Bruder, A.; Piggott, J. J.; Summerfield, T. C.; Matthaei, C. D. (2017). "High-throughput amplicon sequencing and stream benthic bacteria: identifying the best taxonomic level for multiple-stressor research". Scientific Reports. 7 (1): 44657. Bibcode:2017NatSR...744657S. doi:10.1038/srep44657. ISSN   2045-2322. PMC   5361126 . PMID   28327636.
  65. Mahamoud Ahmed, Ayanleh; Tardy, Vincent; Bonnineau, Chloé; Billard, Patrick; Pesce, Stéphane; Lyautey, Emilie (2020). "Changes in sediment microbial diversity following chronic copper-exposure induce community copper-tolerance without increasing sensitivity to arsenic". Journal of Hazardous Materials. 391: 122197. doi: 10.1016/j.jhazmat.2020.122197 . PMID   32058227. S2CID   211111968.
  66. Li, Xiao-Fang; Yin, Hong-Bin; Su, Jian-Qiang (2012). "An Attempt to Quantify Cu-Resistant Microorganisms in a Paddy Soil from Jiaxing, China". Pedosphere. 22 (2): 201–205. doi:10.1016/S1002-0160(12)60006-X.
  67. Corcoll, Natàlia; Yang, Jianghua; Backhaus, Thomas; Zhang, Xiaowei; Eriksson, Martin Karl (2018). "Copper affects composition and functions of microbial communities in marine biofilms at environmentally relevant concentrations". doi: 10.7287/peerj.preprints.27129 .{{cite journal}}: Cite journal requires |journal= (help)
  68. Dunck, B; Rodrigues, L; Bicudo, Dc (2015-08-25). "Functional diversity and functional traits of periphytic algae during a short-term successional process in a Neotropical floodplain lake". Brazilian Journal of Biology. 75 (3): 587–597. doi: 10.1590/1519-6984.17813 . ISSN   1678-4375. PMID   26465723.