Prohibitin, also known as PHB, is a protein that in humans is encoded by the PHB gene. [5] The Phb gene has also been described in animals, fungi, plants, and unicellular eukaryotes. Prohibitins are divided in two classes, termed Type-I and Type-II prohibitins, based on their similarity to yeast PHB1 and PHB2, respectively. Each organism has at least one copy of each type of prohibitin gene. [6] [7]
Prohibitins are evolutionarily conserved genes that are ubiquitously expressed. The human prohibitin gene, located on the BRCA1 chromosome region 17q21, was originally thought to be a negative regulator of cell proliferation and a tumor suppressor. This anti-proliferative activity was later attributed to the 3' untranslated region of the PHB gene, and not to the actual protein. Mutations in human PHB have been linked to sporadic breast cancer. However, over-expression of PHB has been associated with a reduction in androgen receptor activity and a reduction in PSA gene expression resulting in a decrease of androgen-dependent growth of prostate cancer cells. [8] Prohibitin is expressed as two transcripts with varying lengths of 3' untranslated region. The longer transcript is present at higher levels in proliferating tissues and cells, suggesting that this longer 3' untranslated region may function as a trans-acting regulatory RNA. [5]
Prohibitins may have multiple functions including:
Prohibitins are assembled into a ring-like structure with 16–20 alternating Phb1 and Phb2 subunits in the inner mitochondrial membrane. [9] The precise molecular function of the PHB complex is not clear, but a role as chaperone for respiratory chain proteins or as a general structuring scaffold required for optimal mitochondrial morphology and function are suspected. Recently, prohibitins have been demonstrated to be positive, rather than negative, regulators of cell proliferation in both plants and mice.
Both human prohibitins have also been suggested to be localized in the cell nucleus and modulate transcriptional activity by interacting with various transcription factors, including nuclear receptors, either directly or indirectly. However, little evidence for nuclear targeting and transcription factor-binding of prohibitins has been found in other organism (yeast, plants, C. elegans, etc.), indicating that this may be a specific function in mammalian cells. [10] [11] [12] [13]
Human prohibitin 1 has some activity as a virus receptor protein, having been identified as a receptor for Chikungunya Virus (CHIKV) [14] and Dengue Virus 2 (DENV-2). [15] Little else is known about the activity of the prohibitins in viral pathogenesis.
Prohibitin has been shown to interact with:
Prohibitinn in insect Prohibitin (PHB) is a highly conserved eukaryotic protein complex involved in multiple cellular processes. In insects, PHB has been identified as a potential target protein to insecticidal molecules acting as a receptor of PF2 insecticidal lectin in the midgut of Zabrotes subfasciatus larvae (bean pest) and Cry protein of Bacillus thuringiensis in Leptinotarsa decemlineata (Colorado potato beetle).
Steroid hormone receptors are found in the nucleus, cytosol, and also on the plasma membrane of target cells. They are generally intracellular receptors and initiate signal transduction for steroid hormones which lead to changes in gene expression over a time period of hours to days. The best studied steroid hormone receptors are members of the nuclear receptor subfamily 3 (NR3) that include receptors for estrogen and 3-ketosteroids. In addition to nuclear receptors, several G protein-coupled receptors and ion channels act as cell surface receptors for certain steroid hormones.
The androgen receptor (AR), also known as NR3C4, is a type of nuclear receptor that is activated by binding any of the androgenic hormones, including testosterone and dihydrotestosterone, in the cytoplasm and then translocating into the nucleus. The androgen receptor is most closely related to the progesterone receptor, and progestins in higher dosages can block the androgen receptor.
Transcription factor Sp1, also known as specificity protein 1* is a protein that in humans is encoded by the SP1 gene.
Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) also known as modulator of non-genomic activity of estrogen receptor (MNAR) and transcription factor HMX3 is a protein that in humans is encoded by the PELP1 gene. is a transcriptional corepressor for nuclear receptors such as glucocorticoid receptors and a coactivator for estrogen receptors.
Estrogen receptor alpha (ERα), also known as NR3A1, is one of two main types of estrogen receptor, a nuclear receptor that is activated by the sex hormone estrogen. In humans, ERα is encoded by the gene ESR1.
The ERRs are orphan nuclear receptors, meaning the identity of their endogenous ligand has yet to be unambiguously determined. They are named because of sequence homology with estrogen receptors, but do not appear to bind estrogens or other tested steroid hormones.
Histone deacetylase 1 (HDAC1) is an enzyme that in humans is encoded by the HDAC1 gene.
The small heterodimer partner (SHP) also known as NR0B2 is a protein that in humans is encoded by the NR0B2 gene. SHP is a member of the nuclear receptor family of intracellular transcription factors. SHP is unusual for a nuclear receptor in that it lacks a DNA binding domain. Therefore, it is technically neither a transcription factor nor nuclear receptor but nevertheless it is still classified as such due to relatively high sequence homology with other nuclear receptor family members.
Transcription factor E2F1 is a protein that in humans is encoded by the E2F1 gene.
Nuclear receptor-interacting protein 1 (NRIP1) also known as receptor-interacting protein 140 (RIP140) is a protein that in humans is encoded by the NRIP1 gene.
Proliferation-associated protein 2G4 (PA2G4) also known as ErbB3-binding protein 1 (EBP1) is a protein that in humans is encoded by the PA2G4 gene.
Estrogen-related receptor alpha (ERRα), also known as NR3B1, is a nuclear receptor that in humans is encoded by the ESRRA gene. ERRα was originally cloned by DNA sequence homology to the estrogen receptor alpha, but subsequent ligand binding and reporter-gene transfection experiments demonstrated that estrogens did not regulate ERRα. Currently, ERRα is considered an orphan nuclear receptor.
The testicular receptor 2 (TR2) also known as NR2C1 is protein that in humans is encoded by the NR2C1 gene. TR2 is a member of the nuclear receptor family of transcription factors.
Testicular receptor 4 also known as NR2C2 is a protein that in humans is encoded by the NR2C2 gene.
Retinoblastoma-like 1 (p107), also known as RBL1, is a protein that in humans is encoded by the RBL1 gene.
E3 SUMO-protein ligase PIAS3 is an enzyme that in humans is encoded by the PIAS3 gene.
Prohibitin-2 is a protein that in humans is encoded by the PHB2 gene.
Forkhead box protein A1 (FOXA1), also known as hepatocyte nuclear factor 3-alpha (HNF-3A), is a protein that in humans is encoded by the FOXA1 gene.
The retinoblastoma protein is a tumor suppressor protein that is dysfunctional in several major cancers. One function of pRb is to prevent excessive cell growth by inhibiting cell cycle progression until a cell is ready to divide. When the cell is ready to divide, pRb is phosphorylated, inactivating it, and the cell cycle is allowed to progress. It is also a recruiter of several chromatin remodeling enzymes such as methylases and acetylases.
Steroid Receptor Associated and Regulated Protein (SRARP) in humans is a protein encoded by a gene of the same name with two exons that is located on chromosome 1p36.13. SRARP contains 169 amino acids and has a molecular weight of 17,657 Da.