PRR30 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | PRR30 , C2orf53, proline rich 30 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | MGI: 1923877 HomoloGene: 130773 GeneCards: PRR30 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Proline-rich protein 30 (PRR30 or C2orf53) is a protein in humans that is encoded for by the PRR30 gene. [5] PRR30 is a member in the family of Proline-rich proteins characterized by their intrinsic lack of structure. Copy number variations in the PRR30 gene have been associated with an increased risk for neurofibromatosis.
The PRR30 gene is located on the short arm of human chromosome 2 at band 2p23.3. It flanked by Prolactin regulatory element binding (PREB) and Transcription Factor 23 (TCF23). The gene has three Exons in total. PRR30 has a length of 2618 base pairs of linear DNA. [6]
The PRR30 promoter directly flanks the gene and is 1162 base pairs in length. [8]
The PRR30 mRNA transcript is 2063 base pairs in length. There are four splice sites total all of which are in the 5’ UTR. There are no known isoforms or alternative splicing of PRR30.
Human protein PRR30 consists of 412 amino acid residues. It has a molecular weight of 44.7 kdal and an isoelectric point of 10.7. [9] [10] It is proline rich and composed primarily of non-essential amino acids. There is a region of extreme conservation across orthologs spanning from residues 187 to 321. [11] PRR30 appears to be subcellularly localized to the cell nucleus. [12] NetNES predicts a nuclear export signal from residues 213 to 216. [13] IntAct predicts that PRR30 interacts with Human Testis Protein 37 or TEX37, Cystiene Rich Tail Protein 1 (CYSRT1), and Keratin Associated Protein 6-2 (KRTAP6-2). [14] PRR30 is predicted to undergo post-translational modifications in the form of glycosylation and phosphorylation. [15] [16] [17]
PRR30 is an intrinsically disordered protein (IDP) and lacks any formal tertiary structure or quaternary structure. [12] I-Tasser and Phyre predict minimal coiling throughout PRR30 as a whole. In the region of high conservation, there are predicted alpha helices & beta sheets. [19] [20]
Unstructured proteins like PRR30 are highly variable in function. [21] Other Proline-Rich Proteins have been shown to have an affinity for binding calcium across different tissues in the human body. [22] [23] COACH predicts several ligand binding domains associated with calcium across PRR30. The highest confidence predicted calcium binding domain resides in the area of greatest conservation. [24] [25]
NCBI EST profiles have shown differential expression across many tissues but increased levels in the human testes and pharynx. [26]
PRR30 is exclusive to mammals but is not present in all mammals. PRR30 is highly conserved across Primates but shows loss of the gene in members of Rodents and Laurasiatheria. [27] The most distant known ortholog of PRR30 is found in S. harrisii, Tasmanian Devil. The PRR30 gene appears to be evolving relatively fast rate. [28]
Genus & Species [31] | Sequence Identity [31] | Date of Divergence (MYA) [31] | Sequence Length [31] |
Homo sapiens /Human | 100% | 0 | 412 |
Pan paniscus | 99% | 6.4 | 412 |
Pan troglodytes /Chimpanzee | 99% | 6.4 | 412 |
Pongo pygmaeus /Bornean orangutan | 93% | 15.2 | 413 |
Nomascus leucogenys | 94% | 19.43 | 412 |
Gorilla gorilla /Western gorilla | 96% | 8.61 | 412 |
Macaca fascicularis | 93% | 28.1 | 412 |
Papio anubis | 93% | 28.1 | 412 |
Macaca nemestrina | 93% | 28.1 | 412 |
Acinonyx jubatus | 66% | 94 | 394 |
Bos taurus | 65% | 94 | 396 |
Bos indicus | 65% | 94 | 396 |
Heterocephalus glaber | 57% | 88 | 373 |
Cavia porcellus | 54% | 88 | 391 |
Octodon degus | 61% | 88 | 402 |
Mus musculus | 52% | 88 | 399 |
Echinops telfairi | 61% | 102 | 313 |
Erinaceus europaeus | 57% | 94 | 375 |
Tupaia chinensis | 68% | 85 | 410 |
Sorex araneus | 59% | 94 | 298 |
Elephantulus edwardii | 51% | 102 | 286 |
Rhinolophus sinicus | 68% | 94 | 359 |
Miniopterus natalensis | 63% | 94 | 396 |
Myotis brandtii | 64% | 94 | 239 |
Sarcophilus harrisii | 57% | 160 | 376 |
In recent 2015 study, copy number variation of PRR30 gene was linked to an increase risk for neurofibromatosis. 78% of the patients displaying type 1-associated cutaneous neurofibromas carried an extra copy of the PRR30 gene. No mechanism was described illuminating the correlation. [32]
Transmembrane protein 63A is a protein that in humans is encoded by the TMEM63A gene. The mature human protein is approximately 92.1 kilodaltons (kDa), with a relatively high conservation of mass in orthologs. The protein contains eleven transmembrane domains and is inserted into the membrane of the lysosome. BioGPS analysis for TMEM63A in humans shows that the gene is ubiquitously expressed, with the highest levels of expression found in T-cells and dendritic cells.
MORN1 containing repeat 1, also known as Morn1, is a protein that in humans is encoded by the MORN1 gene.
TMEM106A is a gene that encodes the transmembrane protein 106A (TMEM106A) in Homo sapiens. It is located at 17q21.31 on the plus strand next to cancer-related genes NBR1 and BRCA1. The TMEM106A gene contains a domain of unknown function, DUF1356.
Proline-rich 12 (PRR12) is a protein of unknown function encoded by the gene PRR12.
Family with Sequence Similarity 203, Member B (FAM203B) is a protein encoded by the FAM203B gene (8q24.3) in humans. While FAM203B is only found in humans and possibly non-human primates, its paralog, FAM203A, is highly conserved. The FAM203B protein contains two conserved domains of unknown function, DUF383 and DUF384, and no transmembrane domains. This protein has no known function yet, although the homolog of FAM203A in Caenorhabditis elegans (Y54H5A.2) is thought to help regulate the actin cytoskeleton.
Megf8 also known as Multiple Epidermal Growth Factor-like Domains 8, is a protein coding gene that encodes a single pass membrane protein, known to participate in developmental regulation and cellular communication. It is located on chromosome 19 at the 49th open reading frame in humans (19q13.2). There are two isoform constructs known for MEGF8, which differ by a 67 amino acid indel. The isoform 2 splice version is 2785 amino acids long, and predicted to be 296.6 kdal in mass. Isoform 1 is composed of 2845 amino acids and predicted to weigh 303.1 kdal. Using BLAST searches, orthologs were found primarily in mammals, but MEGF8 is also conserved in invertebrates and fishes, and rarely in birds, reptiles, and amphibians. A notably important paralog to multiple epidermal growth factor-like domains 8 is ATRNL1, which is also a single pass transmembrane protein, with several of the same key features and motifs as MEGF8, as indicated by Simple Modular Architecture Research Tool (SMART) which is hosted by the European Molecular Biology Laboratory located in Heidelberg, Germany. MEGF8 has been predicted to be a key player in several developmental processes, such as left-right patterning and limb formation. Currently, researchers have found MEGF8 SNP mutations to be the cause of Carpenter syndrome subtype 2.
Proline-rich protein 21 (PRR21) is a protein of the family of proline-rich proteins. It is encoded by the PRR21 gene, which is found on human chromosome 2, band 2q37.3. The gene exists in several species, both vertebrates and invertebrates, including humans. However, the protein have few conserved regions among species.
C6orf222 is a protein that in humans is encoded by the C6orf222 gene (6p21.31). C6orf222 is conserved in mammals, birds and reptiles with the most distant ortholog being the green sea turtle, Chelonia mydas. The C6orf222 protein contains one mammalian conserved domain: DUF3293. The protein is also predicted to contain a BH3 domain, which has predicted conservation in distant orthologs from the clade Aves.
PRP36 is an extracellular protein in Homo sapiens that is encoded by the PRR36 gene that contains a domain of unknown function, DUF4596, towards the C terminus of the protein. The function of PRP36 is unknown, but high gene expression has been observed in various regions of the brain such as the prefrontal cortex, cerebellum, and the amygdala. PRP36 has one alias: Putative Uncharacterized Protein FLJ22184.
Shortage In Chiasmata 1, also known as SHOC1, is a protein that in humans is encoded by the SHOC1 gene.
PRR29 is a protein located on human chromosome 17 that in humans is encoded by the PRR29 gene.
Transmembrane protein 255A is a protein that is encoded by the TMEM255A gene. TMEM255A is often referred to as family with sequence similarity 70, member A (FAM70A). The TMEM255A protein is transmembrane and is predicted to be located the nuclear envelope of eukaryote organisms.
UPF0575 protein C19orf67 is a protein which in humans is encoded by the C19orf67 gene. Orthologs of C19orf67 are found in many mammals, some reptiles, and most jawed fish. The protein is expressed at low levels throughout the body with the exception of the testis and breast tissue. Where it is expressed, the protein is predicted to be localized in the nucleus to carry out a function. The highly conserved and slowly evolving DUFF3314 region is predicted to form numerous alpha helices and may be vital to the function of the protein.
Chromosome 21 Open Reading Frame 58 (C21orf58) is a protein that in humans is encoded by the C21orf58 gene.
C16orf82 is a protein that, in humans, is encoded by the C16orf82 gene. C16orf82 encodes a 2285 nucleotide mRNA transcript which is translated into a 154 amino acid protein using a non-AUG (CUG) start codon. The gene has been shown to be largely expressed in the testis, tibial nerve, and the pituitary gland, although expression has been seen throughout a majority of tissue types. The function of C16orf82 is not fully understood by the scientific community.
Chromosome 18 open reading frame 63 is a protein which in humans is encoded by the C18orf63 gene. This protein is not yet well understood by the scientific community. Research has been conducted suggesting that C18orf63 could be a potential biomarker for early stage pancreatic cancer and breast cancer.
Transmembrane protein 171 (TMEM171) is a protein that in humans is encoded by the TMEM171 gene.
Transmembrane protein 179 is a protein that in humans is encoded by the TMEM179 gene. The function of transmembrane protein 179 is not yet well understood, but it is believed to have a function in the nervous system.
Serum amyloid A-like 1 is a protein in humans encoded by the SAAL1 gene.
Proline-rich protein 29, encoded by the PRR29 gene in humans, is a protein which is located in the human genome at 17q23. Its function is not fully understood. Its name is derived from the chain of 5 proline amino acids located toward the end of the protein. The primary domain within the sequence of this protein is known as DUF4587. It is reported to have high levels of expression in tissues pertaining to the circulatory system and the immune system. It is hypothesized that PRR29 is a nuclear protein that facilitates communication between the nucleus and the mitochondria.