Pseudohyperaldosteronism

Last updated
Pseudohyperaldosteronism
Other namesPseudoaldosteronism

Pseudohyperaldosteronism (also pseudoaldosteronism) is a medical condition which mimics the effects of elevated aldosterone (hyperaldosteronism) by presenting with high blood pressure, low blood potassium levels (hypokalemia), metabolic alkalosis, and low levels of plasma renin activity (PRA). [1] [2] However, unlike hyperaldosteronism, this conditions exhibits low or normal levels of aldosterone in the blood. [1] [2] Causes include genetic disorders (e.g. apparent mineralocorticoid excess syndrome, Liddle's syndrome, and types of congenital adrenal hyperplasia), acquired conditions (e.g. Cushing's syndrome and mineralocorticoid-producing adrenal tumors), metabolic disorders, and dietary imbalances including excessive consumption of licorice. [1] [3] [4] Confirmatory diagnosis depends on the specific cause and may involve blood tests, urine tests, or genetic testing; however, all forms of this condition exhibit abnormally low concentrations of both plasma renin activity (PRA) and plasma aldosterone concentration (PAC) which differentiates this group of conditions from other forms of secondary hypertension. [1] [2] Treatment is tailored to the specific cause and focuses on symptom control, blood pressure management, and avoidance of triggers. [1]

Contents

Presentation

The presentation of pseudohyperaldosteronism varies depending on the cause. The genetic conditions such as Liddle's syndrome and congenital adrenal hyperplasia present in childhood or earlier in life than the acquired causes which can present at any age. [1] [4] [2] Adult patients present with clinical history of resistant hypertension despite typical medical therapy and lifestyle changes. [1] [4] Hypertension itself is most often asymptomatic. [4] Symptoms of hypokalemia include fatigue, muscular weakness, and increased urine production. [4] [2]

Causes

This condition has several known causes including genetic disorders, acquired conditions, metabolic derangements, and dietary imbalances. All causes mimic the effects of elevated aldosterone without raising aldosterone levels but achieve this through varying mechanisms. [1]

Genetic forms

Genetic disorders that lead to this condition include Liddle's syndrome, apparent mineralocorticoid excess (AME), and two types of congenital adrenal hyperplasia (CAH). [1] [2]

Acquired forms

Some causes of pseudohyperaldosteronism can be acquired throughout life with examples including adrenal tumors and ectopic ACTH syndrome. [5]

Metabolic and dietary forms

Various edible products containing licorice. Excessive consumption of licorice can lead to pseudohyperaldosteronism due to the plant's high concentrations of Glycyrrhetinic acid. 2013.02-402-022aP Liquorice products tue05feb2013.jpg
Various edible products containing licorice. Excessive consumption of licorice can lead to pseudohyperaldosteronism due to the plant's high concentrations of Glycyrrhetinic acid.

Metabolic causes include conditions of glucocorticoid resistance [8] and from mineralocorticoid excess which can occur following high-dose corticosteroid therapy. [1] Dietary causes include overconsumption of licorice-containing products. [3] [9] Glycyrrhetinic acid in licorice inhibits the 11-β-HSD2 enzyme resulting in inappropriate stimulation of the mineralocorticoid receptor by cortisol leading to aldosterone-like effects. [3] [9]

Diagnosis

In patients with hypertension, diagnostic clues pointing to pseudohyperaldosteronism can be found on routine labwork. These include low serum potassium (hypokalemia), elevated serum sodium (hypernatremia), and elevated serum bicarbonate (metabolic alkalosis). [1] Urine studies may show elevated urine potassium (kaliuresis). To further differentiate between hyperaldosteronism and pseudohyperaldosteronism, studies including plasma renin activity (PRA) and plasma aldosterone concentration (PAC) can be obtained. [1] [2] Pseudohyperaldosteronism will exhibit low levels of both PRA and PAC while hyperaldosteronism will demonstrate elevated PAC. [1] Confirmatory tests to diagnose the specific forms of pseudohyperaldosteronism vary depending on the cause. The genetic conditions such as Liddle's syndrome and CAH can be confirmed with genetic tests for the affected genes. [1] [4] CAH can also be confirmed by analyzing enzyme levels following ACTH stimulation testing. [1] AME can be diagnosed with a 24 hour urine collection exhibiting an increased ratio of urinary cortisol to urinary cortisone. [1]

Treatment

Specific treatment of pseudohyperaldosteronism depends on the inciting cause. General management focuses on countering the effects of excess mineralocorticoid activity to achieve adequate blood pressure control and avoid end-organ damage and cardiovascular mortality. [1] In some cases, specific antihypertensive medications may be recommended. In Liddle's syndrome, ENaC-binding potassium-sparing diuretics (e.g. amiloride or triamterene) are used to counter the excess ENaC activity. [4] [10] [2] In AME, the mineralocorticoid receptor-binding potassium-sparing diuretics (e.g. spironolactone or eplerenone) are used to limit aldosterone receptor activity. [1] Other medications such as glucocorticoids are added in AME and CAH to inhibit ACTH and further cortisol production. [1] Lifestyle changes such as a low sodium diet are also used for managing hypertension, [1] [2] and cessation of licorice intake is recommended in cases of licorice overconsumption. [1] [3]

See also

Related Research Articles

<span class="mw-page-title-main">Adrenal gland</span> Endocrine gland

The adrenal glands are endocrine glands that produce a variety of hormones including adrenaline and the steroids aldosterone and cortisol. They are found above the kidneys. Each gland has an outer cortex which produces steroid hormones and an inner medulla. The adrenal cortex itself is divided into three main zones: the zona glomerulosa, the zona fasciculata and the zona reticularis.

<span class="mw-page-title-main">Cortisol</span> Human natural glucocorticoid hormone

Cortisol is a steroid hormone in the glucocorticoid class of hormones and a stress hormone. When used as medication, it is known as hydrocortisone.

<span class="mw-page-title-main">Aldosterone</span> Mineralocorticoid steroid hormone

Aldosterone is the main mineralocorticoid steroid hormone produced by the zona glomerulosa of the adrenal cortex in the adrenal gland. It is essential for sodium conservation in the kidney, salivary glands, sweat glands, and colon. It plays a central role in the homeostatic regulation of blood pressure, plasma sodium (Na+), and potassium (K+) levels. It does so primarily by acting on the mineralocorticoid receptors in the distal tubules and collecting ducts of the nephron. It influences the reabsorption of sodium and excretion of potassium (from and into the tubular fluids, respectively) of the kidney, thereby indirectly influencing water retention or loss, blood pressure, and blood volume. When dysregulated, aldosterone is pathogenic and contributes to the development and progression of cardiovascular and kidney disease. Aldosterone has exactly the opposite function of the atrial natriuretic hormone secreted by the heart.

<span class="mw-page-title-main">Primary aldosteronism</span> Excess production of aldosterone in the adrenal gland

Primary aldosteronism (PA), also known as primary hyperaldosteronism, refers to the excess production of the hormone aldosterone from the adrenal glands, resulting in low renin levels and high blood pressure. This abnormality is a paraneoplastic syndrome. About 35% of the cases are caused by a single aldosterone-secreting adenoma, a condition known as Conn's syndrome.

<span class="mw-page-title-main">Congenital adrenal hyperplasia</span> Genetic disorders of the adrenal gland

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders characterized by impaired cortisol synthesis. It results from the deficiency of one of the five enzymes required for the synthesis of cortisol in the adrenal cortex. Most of these disorders involve excessive or deficient production of hormones such as glucocorticoids, mineralocorticoids, or sex steroids, and can alter development of primary or secondary sex characteristics in some affected infants, children, or adults. It is one of the most common autosomal recessive disorders in humans.

<span class="mw-page-title-main">Mineralocorticoid</span> Group of corticosteroids

Mineralocorticoids are a class of corticosteroids, which in turn are a class of steroid hormones. Mineralocorticoids are produced in the adrenal cortex and influence salt and water balances. The primary mineralocorticoid is aldosterone.

<span class="mw-page-title-main">Adrenal insufficiency</span> Insufficient production of steroid hormones by the adrenal glands

Adrenal insufficiency is a condition in which the adrenal glands do not produce adequate amounts of steroid hormones. The adrenal glands—also referred to as the adrenal cortex—normally secrete glucocorticoids, mineralocorticoids, and androgens. These hormones are important in regulating blood pressure, electrolytes, and metabolism as a whole. Deficiency of these hormones leads to symptoms ranging from abdominal pain, vomiting, muscle weakness and fatigue, low blood pressure, depression, mood and personality changes to organ failure and shock. Adrenal crisis may occur if a person having adrenal insufficiency experiences stresses, such as an accident, injury, surgery, or severe infection; this is a life-threatening medical condition resulting from severe deficiency of cortisol in the body. Death may quickly follow.

<span class="mw-page-title-main">Lipoid congenital adrenal hyperplasia</span> Medical condition

Lipoid congenital adrenal hyperplasia is an endocrine disorder that is an uncommon and potentially lethal form of congenital adrenal hyperplasia (CAH). It arises from defects in the earliest stages of steroid hormone synthesis: the transport of cholesterol into the mitochondria and the conversion of cholesterol to pregnenolone—the first step in the synthesis of all steroid hormones. Lipoid CAH causes mineralocorticoid deficiency in affected infants and children. Male infants are severely undervirilized causing their external genitalia to look feminine. The adrenals are large and filled with lipid globules derived from cholesterol.

<span class="mw-page-title-main">Congenital adrenal hyperplasia due to 11β-hydroxylase deficiency</span> Medical condition

Congenital adrenal hyperplasia due to 11β-hydroxylase deficiency is a form of congenital adrenal hyperplasia (CAH) which produces a higher than normal amount of androgen, resulting from a defect in the gene encoding the enzyme steroid 11β-hydroxylase (11β-OH) which mediates the final step of cortisol synthesis in the adrenal. 11β-OH CAH results in hypertension due to excessive mineralocorticoid effects. It also causes excessive androgen production both before and after birth and can virilize a genetically female fetus or a child of either sex.

Congenital adrenal hyperplasia due to 17α-hydroxylase deficiency is an uncommon form of congenital adrenal hyperplasia (CAH) resulting from a mutation in the gene CYP17A1, which produces the enzyme 17α-hydroxylase. It causes decreased synthesis of cortisol and sex hormones, with resulting increase in mineralocorticoid production. Thus, common symptoms include mild cortisol deficiency, ambiguous genitalia in men or amenorrhea at puberty in women, and hypokalemic hypertension. However, partial (incomplete) deficiency often has inconsistent symptoms between patients, and affected women may be asymptomatic except for infertility.

<span class="mw-page-title-main">Hypoaldosteronism</span> Medical condition

Hypoaldosteronism is an endocrinological disorder characterized by decreased levels of the hormone aldosterone. Similarly, isolated hypoaldosteronism is the condition of having lowered aldosterone without corresponding changes in cortisol.

Secondary hypertension is a type of hypertension which has a specific and identifiable underlying primary cause. It is much less common than essential hypertension, affecting only 5-10% of hypertensive patients. It has many different causes including obstructive sleep apnea, kidney disease, endocrine diseases, and tumors. The cause of secondary hypertension varies significantly with age. It also can be a side effect of many medications.

<span class="mw-page-title-main">Hyperaldosteronism</span> Excess aldosterone in the body

Hyperaldosteronism is a medical condition wherein too much aldosterone is produced. High aldosterone levels can lead to lowered levels of potassium in the blood (hypokalemia) and increased hydrogen ion excretion (alkalosis). Aldosterone is normally produced in the adrenal glands.

<span class="mw-page-title-main">Apparent mineralocorticoid excess syndrome</span> Medical condition

Apparent mineralocorticoid excess is an autosomal recessive disorder causing hypertension, hypernatremia and hypokalemia. It results from mutations in the HSD11B2 gene, which encodes the kidney isozyme of 11β-hydroxysteroid dehydrogenase type 2. In an unaffected individual, this isozyme inactivates circulating cortisol to the less active metabolite cortisone. The inactivating mutation leads to elevated local concentrations of cortisol in the aldosterone sensitive tissues like the kidney. Cortisol at high concentrations can cross-react and activate the mineralocorticoid receptor due to the non-selectivity of the receptor, leading to aldosterone-like effects in the kidney. This is what causes the hypokalemia, hypertension, and hypernatremia associated with the syndrome. Patients often present with severe hypertension and end-organ changes associated with it like left ventricular hypertrophy, retinal, renal and neurological vascular changes along with growth retardation and failure to thrive. In serum both aldosterone and renin levels are low.

<span class="mw-page-title-main">Liddle's syndrome</span> Medical condition

Liddle's syndrome, also called Liddle syndrome, is a genetic disorder inherited in an autosomal dominant manner that is characterized by early, and frequently severe, high blood pressure associated with low plasma renin activity, metabolic alkalosis, low blood potassium, and normal to low levels of aldosterone. Liddle syndrome involves abnormal kidney function, with excess reabsorption of sodium and loss of potassium from the renal tubule, and is treated with a combination of low sodium diet and potassium-sparing diuretics. It is extremely rare, with fewer than 30 pedigrees or isolated cases having been reported worldwide as of 2008.

<span class="mw-page-title-main">11-Deoxycorticosterone</span> Chemical compound

11-Deoxycorticosterone (DOC), or simply deoxycorticosterone, also known as 21-hydroxyprogesterone, as well as desoxycortone (INN), deoxycortone, and cortexone, is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as a precursor to aldosterone. It is an active (Na+-retaining) mineralocorticoid. As its names indicate, 11-deoxycorticosterone can be understood as the 21-hydroxy-variant of progesterone or as the 11-deoxy-variant of corticosterone.

<span class="mw-page-title-main">Adrenal gland disorder</span> Medical condition

Adrenal gland disorders are conditions that interfere with the normal functioning of the adrenal glands. Your body produces too much or too little of one or more hormones when you have an adrenal gland dysfunction. The type of issue you have and the degree to which it affects your body's hormone levels determine the symptoms.

Glucocorticoid remediable aldosteronism also describable as aldosterone synthase hyperactivity, is an autosomal dominant disorder in which the increase in aldosterone secretion produced by ACTH is no longer transient.

Feline hyperaldosteronism is a disease in cats. The symptoms are caused by abnormally high concentrations of the hormone aldosterone, which is secreted by the adrenal gland. The high concentrations of aldosterone may be due directly to a disorder of the adrenal gland, or due to something outside of the adrenal gland causing it to secrete excessive aldosterone.

<span class="mw-page-title-main">Generalized glucocorticoid resistance</span> Medical condition

Generalized glucocorticoid resistance or Chrousos syndrome is a rare genetic disorder that can run in families or be sporadic. It is characterized by partial or generalized target-tissue insensitivity to glucocorticoids.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Raina, Rupesh; Krishnappa, Vinod; Das, Abhijit; Amin, Harshesh; Radhakrishnan, Yeshwanter; Nair, Nikhil R.; Kusumi, Kirsten (2019-07-01). "Overview of Monogenic or Mendelian Forms of Hypertension". Frontiers in Pediatrics. 7: 263. doi: 10.3389/fped.2019.00263 . ISSN   2296-2360. PMC   6613461 . PMID   31312622.
  2. 1 2 3 4 5 6 7 8 9 10 11 Mubarik, Ateeq; Anastasopoulou, Catherine; Riahi, Shayan; Aeddula, Narothama R. (2020), "Liddle Syndrome", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID   30725596 , retrieved 2020-10-21
  3. 1 2 3 4 Sabbadin, Chiara; Bordin, Luciana; Donà, Gabriella; Manso, Jacopo; Avruscio, Giampiero; Armanini, Decio (2019). "Licorice: From Pseudohyperaldosteronism to Therapeutic Uses". Frontiers in Endocrinology. 10: 484. doi: 10.3389/fendo.2019.00484 . ISSN   1664-2392. PMC   6657287 . PMID   31379750.
  4. 1 2 3 4 5 6 7 8 Tetti, Martina; Monticone, Silvia; Burrello, Jacopo; Matarazzo, Patrizia; Veglio, Franco; Pasini, Barbara; Jeunemaitre, Xavier; Mulatero, Paolo (2018-03-11). "Liddle Syndrome: Review of the Literature and Description of a New Case". International Journal of Molecular Sciences. 19 (3): 812. doi: 10.3390/ijms19030812 . ISSN   1422-0067. PMC   5877673 . PMID   29534496.
  5. 1 2 3 4 Choi, Kyu Bok (June 2007). "Hypertensive Hypokalemic Disorders". Electrolytes & Blood Pressure. 5 (1): 34–41. doi:10.5049/EBP.2007.5.1.34. ISSN   1738-5997. PMC   3894504 . PMID   24459498.
  6. Wada, N.; Kubo, M.; Kijima, H.; Yamane, Y.; Nishikawa, T.; Sasano, H.; Koike, T. (October 1995). "A case of deoxycorticosterone-producing adrenal adenoma". Endocrine Journal. 42 (5): 637–642. doi: 10.1507/endocrj.42.637 . ISSN   0918-8959. PMID   8574286.
  7. Sontia, Bruno; Mooney, Jan; Gaudet, Lise; Touyz, Rhian M. (2008-02-14). "Pseudohyperaldosteronism, Liquorice, and Hypertension". The Journal of Clinical Hypertension. 10 (2): 153–157. doi:10.1111/j.1751-7176.2008.07470.x. ISSN   1524-6175. PMC   8109973 . PMID   18256580.
  8. Martinez-Aguayo, Alejandro; Fardella, Carlos (2009). "Genetics of hypertensive syndrome". Hormone Research. 71 (5): 253–259. doi: 10.1159/000208798 . ISSN   1423-0046. PMID   19339789. S2CID   11267816.
  9. 1 2 Makino, Toshiaki (2014). "3-Monoglucuronyl glycyrrhretinic acid is a possible marker compound related to licorice-induced pseudoaldosteronism". Biological & Pharmaceutical Bulletin. 37 (6): 898–902. doi: 10.1248/bpb.b13-00997 . ISSN   1347-5215. PMID   24882402.
  10. Hanukoglu, Israel; Hanukoglu, Aaron (2016-04-01). "Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases". Gene. 579 (2): 95–132. doi:10.1016/j.gene.2015.12.061. ISSN   0378-1119. PMC   4756657 . PMID   26772908.