Pseudopeziza medicaginis

Last updated

Pseudopeziza medicaginis
Scientific classification
Kingdom:
Phylum:
Class:
Subclass:
Order:
Family:
Genus:
Species:
P. medicaginis
Binomial name
Pseudopeziza medicaginis
(Lib.) Sacc., (1887)
Synonyms

Phacidium medicaginisLib., (1832)
Phyllachora medicaginisSacc., (1873)

Contents

Pseudopeziza medicaginis, is a fungal pathogen of alfalfa.

Host and Symptoms

Common leaf spot on alfalfa is a foliar disease caused by the pathogen Pseudopeziza medicaginis. P. medicaginis is an ascomycete and can also cause leaf spot in crops like red clover. Although not much research has been done on this specific disease, it has been reported as the most common alfalfa disease and it causes the greatest yield loss in alfalfa crops for over 100 years [1] (Jones, 1919). It has been shown in multiple studies that it can cause up to 40% loss in yield but average losses are closer to 18% (Nutter et al., 2002). The first symptoms of leaf spot are small circular lesions that form on the lowest leaves on the plant. These lesions are usually less than 2mm in diameter and are brown or black in color with smooth margins [2] (Johnson, 2019). The younger leaves show symptoms first, but the disease works its way up the plant. Eventually, the leaves will become so diseased that they will turn yellow and fall off. Pseudopeziza medicaginis will not kill the plant but there will be a reduction in quality and yield [3] (Long, 2017). Leaf spots start to appear 5 - 13 days after inoculation and apothecia are formed 14 days inoculation (Samac, Rhodes, and Lamp, 2015). In the center of the lesion, a dark colored raised disk can be observed and is known as the apothecium. This feature is a diagnostic sign of the disease (UW Extension, 2006). These ascocarps contain the asci which eventually release ascospores to infect more tissues. If the disease progresses enough, elliptical lesions can be observed on the succulent stems. These lesions are not commonly found and do not produce fruiting bodies (UW Extension, 2006).

Environment

Common leaf spot can be found in any alfalfa field across the United States. While the southwestern states, including Arizona, New Mexico, Utah, and Colorado are only at  moderate risk for this disease, the rest of the U.S. is considered to be under a severe risk (Undersander, 2015). Common leaf spot can be found anywhere that alfalfa is grown, but prefers cool, moist conditions and acidic soils. The ideal temperature for the pathogen is 60-75 degrees Fahrenheit [3] (Long, 2017). The first and second harvests of alfalfa are most threatened. Second harvest tends to be the most affected by the disease because the environmental conditions are just right and the disease has had time to develop. During a rainy season, the dense canopy of alfalfa traps the humidity and makes the perfect environment for the pathogen, giving rise to common leaf spot.

Management

There has been a significant amount of work done over the years to produce a strain of alfalfa that is resistant to P. medicaginis. However, currently there is no variety that is completely resistant. Planting less susceptible varieties of alfalfa is the best way to combat the issue of common leaf spot (Undersander, 2015). It is important to scout fields early and look for symptoms on the younger leaves of plants. Fungicides can be applied, but are not always successful or cost effective. The severity of the disease is very dependent on the weather and the environment. During cold and wet seasons the fields should be scouted frequently and more carefully. If leaf spot is discovered early in the season, it is possible the symptoms will decrease as the weather warms up. The best thing to do is to harvest early because delayed harvest can make the situation worse. Harvesting early will prevent further defoliation of the current crop, which will preserve some of the quality and yield (UW Extension, 2006). Pseudopeziza medicaginis overwinters in infected plant debris so harvesting early can also reduce the amount of inoculum available for further infections in that growing season and the next year. Harvesting early also allows the field to dry out, and reduces humidity in the phyllosphere making conditions less ideal for the pathogen [2] (Johnson, 2019). Another way to reduce the effects of common leaf spot is proper nutrient management (Grewal, and Williams, 2002). Applications of potassium fertilizer can minimize yield loss, severity, and leaf drop.

Related Research Articles

Leaf spot Type of area of a leaf

A leaf spot is a limited, discoloured, diseased area of a leaf that is caused by fungal, bacterial or viral plant diseases, or by injuries from nematodes, insects, environmental factors, toxicity or herbicides. These discoloured spots or lesions often have a centre of necrosis or cell death. Symptoms can overlap across causal agents, however differing signs and symptoms of certain pathogens can lead to the diagnosis of the type of leaf spot disease. Prolonged wet and humid conditions promote leaf spot disease and most pathogens are spread by wind, splashing rain or irrigation that carry the disease to other leaves.

Aphanomyces euteiches is a water mould, or oomycete, plant pathogen responsible for the disease Aphanomyces root rot. The species Aphanomyces euteiches can infect a variety of legumes. Symptoms of the disease can differ among hosts but generally include reduced root volume and function, leading to stunting and chlorotic foliage. Aphanomyces root rot is an important agricultural disease in the United States, Europe, Australia, New Zealand, and Japan. Management includes using resistant crop varieties and having good soil drainage, as well as testing soil for the pathogen to avoid infected fields.

Alternaria triticina is a fungal plant pathogen that causes leaf blight on wheat. A. triticina is responsible for the largest leaf blight issue in wheat and also causes disease in other major cereal grain crops. It was first identified in India in 1962 and still causes significant yield loss to wheat crops on the Indian subcontinent. The disease is caused by a fungal pathogen and causes necrotic leaf lesions and in severe cases shriveling of the leaves.

<i>Pyrenophora tritici-repentis</i> Species of fungus

Pyrenophora tritici-repentis (telomorph) and Drechslera tritici-repentis (anamorph) is a necrotrophic plant pathogen of fungal origin, phylum Ascomycota. The pathogen causes a disease originally named yellow spot but now commonly called tan spot, yellow leaf spot, yellow leaf blotch or helminthosporiosis. At least eight races of the pathogen are known to occur based on their virulence on a wheat differential set.

Peronospora trifoliorum, commonly known as downy mildew of alfalfa, is an oomycete plant pathogen infecting alfalfa.

<i>Corynespora cassiicola</i> Species of fungus

Corynespora cassiicola is a species of fungus well known as a plant pathogen. It is a sac fungus in the family Corynesporascaceae. It is the type species of the genus Corynespora.

<i>Diplocarpon earlianum</i> Species of fungus

Diplocarpon earlianum is a species of fungus that causes disease in strawberry plants called strawberry leaf scorch. The disease overwinters in plant debris and infects strawberry plants during the spring season when it is wet. The five main methods to reduce strawberry leaf scorch include: irrigation techniques, crop rotation, planting resistant and disease-free seeds, fungicide use, and sanitation measures. Control of strawberry leaf scorch is important because it is responsible for the majority of disease in strawberries. Diplocarpon earliana affects the fruit quality and yield of the strawberry crop. Losses range from negligible to severe depending on numerous epidemiological factors including cultivar susceptibility, type of cropping system, and weather conditions

<i>Ascochyta</i> Genus of fungi

Ascochyta is a genus of ascomycete fungi, containing several species that are pathogenic to plants, particularly cereal crops. The taxonomy of this genus is still incomplete. The genus was first described in 1830 by Marie-Anne Libert, who regarded the spores as minute asci and the cell contents as spherical spores. Numerous revisions to the members of the genus and its description were made for the next several years. Species that are plant pathogenic on cereals include, A. hordei, A. graminea, A. sorghi, A. tritici. Symptoms are usually elliptical spots that are initially chlorotic and later become a necrotic brown. Management includes fungicide applications and sanitation of diseased plant tissue debris.

Cercospora arachidicola is a fungal ascomycete plant pathogen that causes early leaf spot of peanut. Peanuts originated in South America and are cultivated globally in warm, temperate and tropical regions.

<i>Alternaria solani</i> Species of fungus

Alternaria solani is a fungal pathogen that produces a disease in tomato and potato plants called early blight. The pathogen produces distinctive "bullseye" patterned leaf spots and can also cause stem lesions and fruit rot on tomato and tuber blight on potato. Despite the name "early," foliar symptoms usually occur on older leaves. If uncontrolled, early blight can cause significant yield reductions. Primary methods of controlling this disease include preventing long periods of wetness on leaf surfaces and applying fungicides. Early blight can also be caused by Alternaria tomatophila, which is more virulent on stems and leaves of tomato plants than Alternaria solani.

<i>Phomopsis obscurans</i> Species of fungus

Phomopsis obscurans is a common fungus found in strawberry plants, which causes the disease of leaf blight. Common symptoms caused by the pathogen begin as small circular reddish-purple spots and enlarge to form V-shaped lesions that follow the vasculature of the plant's leaves. Although the fungus infects leaves early in the growing season when the plants are beginning to develop, leaf blight symptoms are most apparent on older plants towards the end of the growing season. The disease can weaken strawberry plants through the destruction of foliage, which results in reduced yields. In years highly favorable for disease development, leaf blight can ultimately lead to the death of the strawberry plants. A favorable environment for the growth and development of the Phomopsis obscurans pathogen is that of high temperature, high inoculum density, a long period of exposure to moisture, and immature host tissue. In the case of disease management, a conjunction of cultural practices is the most effective way of reducing the infection.

<i>Ascochyta pisi</i> Species of fungus

Ascochyta pisi is a fungal plant pathogen that causes ascochyta blight on pea, causing lesions of stems, leaves, and pods. These same symptoms can also be caused by Ascochyta pinodes, and the two fungi are not easily distinguishable.

<i>Cercospora sojina</i> Species of fungus

Cercospora sojina is a fungal plant pathogen which causes frogeye leaf spot of soybeans. Frog eye leaf spot is a major disease on soybeans in the southern U.S. and has recently started to expand into the northern U.S. where soybeans are grown. The disease is also found in other soybean production areas of the world.

Strawberry foliar nematode, or strawberry crimp nematode, is a disease caused by Aphelenchoides fragariae, a plant pathogenic nematode. it is common in strawberries and ornamental plants and can greatly affect plant yield and appearance, resulting in a loss of millions of dollars of revenue. Symptoms used to diagnose the disease are angular, water soaked lesions and necrotic blotches. Aphelenchoides fragariae is the nematode pathogen that causes the disease. Its biological cycle includes four life stages, three of which are juvenile. The nematode can undergo multiple life cycles in one growing season when favorable conditions are present. They can infect the crowns, runners, foliage, and new buds of the plant via stylet penetration or through the stomata. The best management practices for this disease are sanitation, prevention of induction of the pathogen to the environment, and planting clean seed or starter plants.

This article summarizes different crops, what common fungal problems they have, and how fungicide should be used in order to mitigate damage and crop loss. This page also covers how specific fungal infections affect crops present in the United States.

Corn grey leaf spot

Grey leaf spot (GLS) is a foliar fungal disease that affects maize, also known as corn. GLS is considered one of the most significant yield-limiting diseases of corn worldwide. There are two fungal pathogens that cause GLS: Cercospora zeae-maydis and Cercospora zeina. Symptoms seen on corn include leaf lesions, discoloration (chlorosis), and foliar blight. Distinct symptoms of GLS are rectangular, brown to gray necrotic lesions that run parallel to the leaf, spanning the spaces between the secondary leaf veins. The fungus survives in the debris of topsoil and infects healthy crops via asexual spores called conidia. Environmental conditions that best suit infection and growth include moist, humid, and warm climates. Poor airflow, low sunlight, overcrowding, improper soil nutrient and irrigation management, and poor soil drainage can all contribute to the propagation of the disease. Management techniques include crop resistance, crop rotation, residue management, use of fungicides, and weed control. The purpose of disease management is to prevent the amount of secondary disease cycles as well as to protect leaf area from damage prior to grain formation. Corn grey leaf spot is an important disease of corn production in the United States, economically significant throughout the Midwest and Mid-Atlantic regions. However, it is also prevalent in Africa, Central America, China, Europe, India, Mexico, the Philippines, northern South America, and Southeast Asia. The teleomorph of Cercospora zeae-maydis is assumed to be Mycosphaerella sp.

Ascochyta diseases of pea

Ascochyta blights occur throughout the world and can be of significant economic importance. Three fungi contribute to the ascochyta blight disease complex of pea. Ascochyta pinodes causes Mycosphaerella blight. Ascochyta pinodella causes Ascochyta foot rot, and Ascochyta pisi causes Ascochyta blight and pod spot. Of the three fungi, Ascochyta pinodes is of the most importance. These diseases are conducive under wet and humid conditions and can cause a yield loss of up to fifty percent if left uncontrolled. The best method to control ascochyta blights of pea is to reduce the amount of primary inoculum through sanitation, crop-rotation, and altering the sowing date. Other methods—chemical control, biological control, and development of resistant varieties—may also be used to effectively control ascochyta diseases.

Spring black stem Plant fungal disease

Spring Black Stem is a common fungal, foliar disease caused by Ascochyta medicaginicola. Spring Black Stem is most commonly found in alfalfa, but also attacks certain clovers. The fungus survives in stubble from previous cuttings and spreads easily by rain splash, running water, and equipment. The disease is present in numerous alfalfa fields throughout the Northeast United States.

<i>Spilocaea oleaginea</i> Species of fungus

Spilocaea oleaginea is a deuteromycete fungal plant pathogen, the cause of the disease olive peacock spot, also known as olive leaf spot and bird's eye spot. This plant disease commonly affects the leaves of olive trees worldwide. The disease affects trees throughout the growing season and can cause significant losses in yield. The disease causes blemishes on the fruit, delays ripening, and reduces the yield of oil. Defoliation and in severe cases, twig death, can occur, and the disease can have long-term health effects on the trees.

Bacterial leaf streak (BLS), also known as black chaff, is a common bacterial disease of wheat. The disease is caused by the bacterial species Xanthomonas translucens pv. undulosa. The pathogen is found globally, but is a primary problem in the US in the lower mid-south and can reduce yields by up to 40 percent.[6] BLS is primarily seed-borne and survives in and on the seed, but may also survive in crop residue in the soil in the off-season. During the growing season, the bacteria may transfer from plant to plant by contact, but it is primarily spread by rain, wind and insect contact. The bacteria thrives in moist environments, and produces a cream to yellow bacterial ooze, which, when dry, appears light colored and scale-like, resulting in a streak on the leaves. The invasion of the head of wheat causes bands of necrotic tissue on the awns, which is called Black Chaff.[14] The disease is not easily managed, as there are no pesticides on the market for treatment of the infection. There are some resistant cultivars available, but no seed treatment exists. Some integrated pest management (IPM) techniques may be used to assist with preventing infection although, none will completely prevent the disease.[2]

References