RF power amplifier

Last updated
An RF power amplifier Graduate School Project (2870679632).jpg
An RF power amplifier
Class C VHF power amplifier based on the transistor MRF317. MFR317 FM amp.jpg
Class C VHF power amplifier based on the transistor MRF317.

A radio frequency power amplifier (RF power amplifier) is a type of electronic amplifier that converts a low-power radio-frequency signal into a higher power signal. Typically, RF power amplifiers drive the antenna of a transmitter. Design goals often include gain, power output, bandwidth, power efficiency, linearity (low signal compression at rated output), input and output impedance matching, and heat dissipation.

Transmitter Electronic device that emits radio waves

In electronics and telecommunications a transmitter or radio transmitter is an electronic device which produces radio waves with an antenna. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves.

Gain (electronics) ability of a  circuit to increase the power or amplitude of a signal

In electronics, gain is a measure of the ability of a two-port circuit to increase the power or amplitude of a signal from the input to the output port by adding energy converted from some power supply to the signal. It is usually defined as the mean ratio of the signal amplitude or power at the output port to the amplitude or power at the input port. It is often expressed using the logarithmic decibel (dB) units. A gain greater than one, that is amplification, is the defining property of an active component or circuit, while a passive circuit will have a gain of less than one.

Gain compression

Gain compression is a reduction in "differential" or "slope" gain caused by nonlinearity of the transfer function of the amplifying device. This nonlinearity may be caused by heat due to power dissipation or by overdriving the active device beyond its linear region. It is a large-signal phenomenon of circuits.

Contents

Amplifier classes

Many modern RF amplifiers operate in different modes, called “classes”, to help achieve different design goals. Some classes are class A, class AB, class B, class C, which are considered the linear amplifier classes. In these classes the active device is used as a controlled current source. The bias at the input determines the class of the amplifier. A common trade-off in power amplifier design is the trade-off between efficiency and linearity. The previously named classes become more efficient, but less linear in the order they are listed. Operating the active device as a switch results in higher efficiency, theoretically up to 100%, but lower linearity. [1] Among the switch-mode classes are Class D, Class F and class E. [2] The Class D amplifier is not often used in RF applications, because the finite switching speed of the active devices and possible charge storage in saturation could lead to a large I-V product [1] , which deteriorates efficiency.

Class-D amplifier

A class-D amplifier or switching amplifier is an electronic amplifier in which the amplifying devices operate as electronic switches, and not as linear gain devices as in other amplifiers. They operate by rapidly switching back and forth between the supply rails, being fed by a modulator using pulse width, pulse density, or related techniques to encode the audio input into a pulse train. The audio escapes through a simple low-pass filter into the loudspeaker. The high-frequency pulses are blocked. Since the pairs of output transistors are never conducting at the same time, there is no other path for current flow apart from the low-pass filter/loudspeaker. For this reason, efficiency can exceed 90%.

Solid state vs. vacuum tube amplifiers

Modern RF power amplifiers use solid-state devices, predominantly MOSFETs (metal-oxide-semiconductor field-effect transistors). [3] [4] Bipolar junction transistors were also previously used, before being replaced by power MOSFETs as the standard technology for RF power amplifiers by the early 1990s. [3]

A power semiconductor device is a semiconductor device used as a switch or rectifier in power electronics. Such a device is also called a power device or, when used in an integrated circuit, a power IC.

MOSFET Transistor used for amplifying or switching electronic signals.

The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET), also known as the metal–oxide–silicon transistor (MOS transistor, or MOS), is a type of field-effect transistor that is fabricated by the controlled oxidation of a semiconductor, typically silicon. It has an insulated gate, whose voltage determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. The MOSFET is the basic building block of modern electronics. Since its invention by Mohamed Atalla and Dawon Kahng at Bell Labs in November 1959, the MOSFET has become the most widely manufactured device in history, with an estimated total of 13 sextillion (1.3 × 1022) MOS transistors manufactured between 1960 and 2018.

Bipolar junction transistor transistor that uses both electron and hole charge carriers.In contrast,unipolar transistors such as field-effect transistors,only use one kind of charge carrier.For their operation,BJTs use 2 junctions between 2 semiconductor types,n-type and p-type

A bipolar junction transistor is a type of transistor that uses both electrons and holes as charge carriers.

MOSFET transistors and other modern solid-state devices have replaced vacuum tubes in most electronic devices, but tubes are still used in some high-power transmitters (see Valve RF amplifier ). Although mechanically robust, transistors are electrically fragile they are easilly damaged by excess voltage or current. Tubes are mechanically fragile, but electrically robust they can handle remarkably high electrical overloads without appreciable damage.

Vacuum tube Device that controls electric current between electrodes in an evacuated container

In electronics, a vacuum tube, an electron tube, or valve or, colloquially, a tube, is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.

Valve RF amplifier

A valve RF amplifier or tube amplifier (U.S.), is a device for electrically amplifying the power of an electrical radio frequency signal.

Overvoltage when the voltage in a circuit is raised above its upper design limit

When the voltage in a circuit or part of it is raised above its upper design limit, this is known as overvoltage. The conditions may be hazardous. Depending on its duration, the overvoltage event can be transient—a voltage spike—or permanent, leading to a power surge.

Applications

The basic applications of the RF power amplifier include driving to another high power source, driving a transmitting antenna and exciting microwave cavity resonators. Among these applications, driving transmitter antennas is most well known. The transmitter–receivers are used not only for voice and data communication but also for weather sensing (in the form of a radar).[ citation needed ]

Antenna (radio) electrical device which converts electric power into radio waves, and vice versa

In radio engineering, an antenna is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

Microwave cavity

A microwave cavity or radio frequency (RF) cavity is a special type of resonator, consisting of a closed metal structure that confines electromagnetic fields in the microwave region of the spectrum. The structure is either hollow or filled with dielectric material. The microwaves bounce back and forth between the walls of the cavity. At the cavity's resonant frequencies they reinforce to form standing waves in the cavity. Therefore, the cavity functions similarly to an organ pipe or sound box in a musical instrument, oscillating preferentially at a series of frequencies, its resonant frequencies. Thus it can act as a bandpass filter, allowing microwaves of a particular frequency to pass while blocking microwaves at nearby frequencies.

A transceiver is a device comprising both a transmitter and a receiver that are combined and share common circuitry or a single housing.

RF power amplifiers using LDMOS (laterally diffused MOSFET) are the most widely used power semiconductor devices in wireless telecommunication networks, particularly mobile networks. [5] [6] LDMOS-based RF power amplifiers are widely used in digital mobile networks such as 2G, 3G, [5] and 4G. [6]

LDMOS is a planar double-diffused MOSFET used in microwave/RF power amplifiers as well as audio power amplifiers. These transistors are often fabricated on p/p+ silicon epitaxial layers. The fabrication of LDMOS devices mostly involves various ion-implantation and subsequent annealing cycles. As an example, The drift region of this power MOSFET is fabricated using up to three ion implantation sequences in order to achieve the appropriate doping profile needed to withstand high electric fields.

2G is short for second-generation cellular technology. 2G cellular networks were commercially launched on the GSM standard in Finland by Radiolinja in 1991.

3G, short for third generation, is the third generation of wireless mobile telecommunications technology. It is the upgrade for 2G and 2.5G GPRS networks, for faster data transfer speed. This is based on a set of standards used for mobile devices and mobile telecommunications use services and networks that comply with the International Mobile Telecommunications-2000 (IMT-2000) specifications by the International Telecommunication Union. 3G finds application in wireless voice telephony, mobile Internet access, fixed wireless Internet access, video calls and mobile TV.

Wideband amplifier design

Impedance transformations over large bandwidth are difficult to realize, thus most wideband amplifiers use 50 Ω output loading. Transistor output power is then limited to

is defined as the breakdown voltage

is defined as the knee voltage

and is being chosen so the rated power can be met. The external load is typically , therefore there must be some sort of transformation that transforms from to .

The loadline method is often used in RF power amplifier design. [7]

Related Research Articles

Amplifier electronic device that can increase the power of a signal

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the power of a signal. It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is a circuit that has a power gain greater than one.

In radio engineering and telecommunications, standing wave ratio (SWR) is a measure of impedance matching of loads to the characteristic impedance of a transmission line or waveguide. Impedance mismatches result in standing waves along the transmission line, and SWR is defined as the ratio of the partial standing wave's amplitude at an antinode (maximum) to the amplitude at a node (minimum) along the line.

Negative-feedback amplifier

A Negative-feedback amplifier is an electronic amplifier that subtracts a fraction of its output from its input, so that negative feedback opposes the original signal. The applied negative feedback can improve its performance and reduces sensitivity to parameter variations due to manufacturing or environment. Because of these advantages, many amplifiers and control systems use negative feedback.

Impedance matching practice in electronics

In electronics, impedance matching is the practice of designing the input impedance of an electrical load or the output impedance of its corresponding signal source to maximize the power transfer or minimize signal reflection from the load.

Transconductance, also infrequently called mutual conductance, is the electrical characteristic relating the current through the output of a device to the voltage across the input of a device. Conductance is the reciprocal of resistance.

In electronics, especially audio and sound recording, a high impedance bridging, voltage bridging, or simply bridging connection is one in which the load impedance is much larger than the source impedance. In cases where only the load impedance can be varied, maximizing the load impedance serves to both minimize the current drawn by the load and maximize the voltage signal across load. Essentially, the load is measuring the source's voltage without affecting it. In cases where only the source impedance can be varied, minimizing the source impedance serves to maximize the power delivered to the load. A different configuration is an impedance matching connection in which the source and load impedances are either equal or complex conjugates. Such a configuration serves to either prevent reflections when transmission lines are involved, or to maximize power delivered to the load given an unchangeable source impedance.

Input impedance

The input impedance of an electrical network is the measure of the opposition to current (impedance), both static (resistance) and dynamic (reactance), into the load network that is external to the electrical source. The input admittance (1/impedance) is a measure of the load's propensity to draw current. The source network is the portion of the network that transmits power, and the load network is the portion of the network that consumes power.

Output impedance

The output impedance of an electrical network is the measure of the opposition to current flow (impedance), both static (resistance) and dynamic (reactance), into the load network being connected that is internal to the electrical source. The output impedance is a measure of the source's propensity to drop in voltage when the load draws current, the source network being the portion of the network that transmits and the load network being the portion of the network that consumes.

Dummy load

A dummy load is a device used to simulate an electrical load, usually for testing purposes. In radio a dummy antenna is connected to the output of a radio transmitter and electrically simulates an antenna, to allow the transmitter to be adjusted and tested without radiating radio waves. In audio systems a dummy load is connected to the output of an amplifier to electrically simulate a loudspeaker, allowing the amplifier to be tested without producing sound. Load banks are connected to electrical power supplies to simulate the supply's intended electrical load for testing purposes.

A network, in the context of electronics, is a collection of interconnected components. Network analysis is the process of finding the voltages across, and the currents through, all network components. There are many techniques for calculating these values. However, for the most part, the techniques assume linear components. Except where stated, the methods described in this article are applicable only to linear network analysis.

A television transmitter is a transmitter that is used for terrestrial (over-the-air) television broadcasting. It is an electronic device that radiates radio waves that carry a video signal representing moving images, along with a synchronized audio channel, which is received by television receivers belonging to a public audience, which display the image on a screen. A television transmitter, together with the broadcast studio which originates the content, is called a television station. Television transmitters must be licensed by governments, and are restricted to a certain frequency channel and power level. They transmit on frequency channels in the VHF and UHF bands. Since radio waves of these frequencies travel by line of sight, they are limited by the horizon to reception distances of 40-60 miles depending on the height of transmitter station.

Linear amplifier

A linear amplifier is an electronic circuit whose output is proportional to its input, but capable of delivering more power into a load. The term usually refers to a type of radio-frequency (RF) power amplifier, some of which have output power measured in kilowatts, and are used in amateur radio. Other types of linear amplifier are used in audio and laboratory equipment.

Power MOSFET power MOS field-effect transistor

A power MOSFET is a specific type of MOSFET designed to handle significant power levels.

In electronics, the Miller effect accounts for the increase in the equivalent input capacitance of an inverting voltage amplifier due to amplification of the effect of capacitance between the input and output terminals. The virtually increased input capacitance due to the Miller effect is given by

A radio transmitter is an electronic device which, when connected to an antenna, produces an electromagnetic signal such as in radio and television broadcasting, two way communications or radar. Heating devices, such as a microwave oven, although of similar design, are not usually called transmitters, in that they use the electromagnetic energy locally rather than transmitting it to another location.

Technical specifications and detailed information on the valve audio amplifier, including its development history.

Radio-frequency engineering, or RF engineering, is a subset of electrical and electronic engineering involving the application of transmission line, waveguide, antenna and electromagnetic field principles to the design and application of devices that produce or utilize signals within the radio band, the frequency range of about 20 kHz up to 300 GHz.

Power amplifier classes are, in electronics, letter symbols applied to different power amplifier types. The class gives a broad indication of an amplifer's characteristics and performance. The classes are related to the time period that the active amplifier device is passing current, expressed as a fraction of the period of a signal waveform applied to the input. A class A amplifier is conducting through all the period of the signal; Class B only for one-half the input period, class C for much less than half the input period. A Class D amplifier operates its output device in a switching manner; the fraction of the time that the device is conducting is adjusted so a pulse width modulation output is obtained from the stage.

References

  1. 1 2 Lee, Thomas (2003). The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge: Cambridge University Press. pp. 494–503.
  2. Cloutier, Stephen R. "Class E AM Transmitter Descriptions, Circuits, Etc". www.classeradio.com. WA1QIX. Retrieved 6 June 2015.
  3. 1 2 Baliga, B. Jayant (2005). Silicon RF Power MOSFETS. World Scientific. p. 1. ISBN   9789812561213.
  4. MFJ Enterprises. "Ameritron ALS-1300 1200-watt NO TUNE TMOS-FET AMPLIFIER". MFJ Enterprises. Archived from the original on 2014-04-23. Retrieved 6 June 2015.Cite uses deprecated parameter |dead-url= (help)
  5. 1 2 Baliga, B. Jayant (2005). Silicon RF Power MOSFETS. World Scientific. p. 1. ISBN   9789812561213.
  6. 1 2 Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. p. 134. ISBN   9780429881343.
  7. Matthew Ozalas (January 14, 2015). "How to Design an RF Power Amplifier: The Basics". youtube.com. Retrieved 2015-02-10.