RF power amplifier

Last updated
An RF power amplifier Graduate School Project (2870679632).jpg
An RF power amplifier
Class C VHF power amplifier based on the transistor MRF317. MFR317 FM amp.jpg
Class C VHF power amplifier based on the transistor MRF317.

A radio frequency power amplifier (RF power amplifier) is a type of electronic amplifier that converts a low-power radio-frequency signal into a higher power signal. Typically, RF power amplifiers drive the antenna of a transmitter. Design goals often include gain, power output, bandwidth, power efficiency, linearity (low signal compression at rated output), input and output impedance matching, and heat dissipation.

Transmitter Electronic device that emits radio waves

In electronics and telecommunications, a transmitter or radio transmitter is an electronic device which produces radio waves with an antenna. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves.

Gain (electronics) ability of a  circuit to increase the power or amplitude of a signal

In electronics, gain is a measure of the ability of a two-port circuit to increase the power or amplitude of a signal from the input to the output port by adding energy converted from some power supply to the signal. It is usually defined as the mean ratio of the signal amplitude or power at the output port to the amplitude or power at the input port. It is often expressed using the logarithmic decibel (dB) units. A gain greater than one, that is amplification, is the defining property of an active component or circuit, while a passive circuit will have a gain of less than one.

Gain compression

Gain compression is a reduction in "differential" or "slope" gain caused by nonlinearity of the transfer function of the amplifying device. This nonlinearity may be caused by heat due to power dissipation or by overdriving the active device beyond its linear region. It is a large-signal phenomenon of circuits.

Contents

Amplifier classes

Many modern RF amplifiers operate in different modes, called “classes”, to help achieve different design goals. Some classes are class A, class AB, class B, class C, which are considered the linear amplifier classes. In these classes the active device is used as a controlled current source. The bias at the input determines the class of the amplifier. A common trade-off in power amplifier design is the trade-off between efficiency and linearity. The previously named classes become more efficient, but less linear in the order they are listed. Operating the active device as a switch results in higher efficiency, theoretically up to 100%, but lower linearity. [1] Among the switch-mode classes are Class D, Class F and class E. [2] The Class D amplifier is not often used in RF applications, because the finite switching speed of the active devices and possible charge storage in saturation could lead to a large I-V product [1] , which deteriorates efficiency.

Class-D amplifier

A class-D amplifier or switching amplifier is an electronic amplifier in which the amplifying devices operate as electronic switches, and not as linear gain devices as in other amplifiers. They operate by rapidly switching back and forth between the supply rails, being fed by a modulator using pulse width, pulse density, or related techniques to encode the audio input into a pulse train. The audio escapes through a simple low-pass filter into the loudspeaker. The high-frequency pulses, which can be as high as 6 MHz, are blocked. Since the pairs of output transistors are never conducting at the same time, there is no other path for current flow apart from the low-pass filter/loudspeaker. For this reason, efficiency can exceed 90%.

Solid state vs. vacuum tube amplifiers

Modern RF power amplifiers use solid-state devices such as bipolar junction transistors and MOSFETs. [3] Transistors and other modern solid-state devices have replaced vacuum tubes in most electronic devices, but tubes are still used in some high-power transmitters (see Valve RF amplifier ). Although mechanically robust, transistors are electrically fragile they are easilly damaged by excess voltage or current. Tubes are mechanically fragile, but electrically robust they can handle remarkably high electrical overloads without appreciable damage.

Bipolar junction transistor transistor that uses both electron and hole charge carriers.In contrast,unipolar transistors such as field-effect transistors,only use one kind of charge carrier.For their operation,BJTs use 2 junctions between 2 semiconductor types,n-type and p-type

A bipolar junction transistor is a type of transistor that uses both electron and hole charge carriers. In contrast, unipolar transistors, such as field-effect transistors, only use one kind of charge carrier. For their operation, BJTs use two junctions between two semiconductor types, n-type and p-type.

MOSFET transistor used for amplifying or switching electronic signals

The metal-oxide-semiconductor field-effect transistor is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, whose voltage determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. A metal-insulator-semiconductor field-effect transistor or MISFET is a term almost synonymous with MOSFET. Another synonym is IGFET for insulated-gate field-effect transistor.

Transistor semiconductor device used to amplify and switch electronic signals and electrical power

A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.

Applications

The basic applications of the RF power amplifier include driving to another high power source, driving a transmitting antenna and exciting microwave cavity resonators. Among these applications, driving transmitter antennas is most well known. The transmitter–receivers are used not only for voice and data communication but also for weather sensing (in the form of a radar).[ citation needed ]

Antenna (radio) electrical device which converts electric power into radio waves, and vice versa

In radio engineering, an antenna is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

Microwave cavity

A microwave cavity or radio frequency (RF) cavity is a special type of resonator, consisting of a closed metal structure that confines electromagnetic fields in the microwave region of the spectrum. The structure is either hollow or filled with dielectric material. The microwaves bounce back and forth between the walls of the cavity. At the cavity's resonant frequencies they reinforce to form standing waves in the cavity. Therefore, the cavity functions similarly to an organ pipe or sound box in a musical instrument, oscillating preferentially at a series of frequencies, its resonant frequencies. Thus it can act as a bandpass filter, allowing microwaves of a particular frequency to pass while blocking microwaves at nearby frequencies.

Radar object detection system based on radio waves

Radar is a detection system that uses radio waves to determine the range, angle, or velocity of objects. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna and a receiver and processor to determine properties of the object(s). Radio waves from the transmitter reflect off the object and return to the receiver, giving information about the object's location and speed.

Wideband amplifier design

Impedance transformations over large bandwidth are difficult to realize, thus most wideband amplifiers use 50 Ω output loading. Transistor output power is then limited to

Electrical impedance intensive physical property

Electrical impedance is the measure of the opposition that a circuit presents to a current when a voltage is applied. The term complex impedance may be used interchangeably.

Bandwidth (signal processing) difference between the upper and lower frequencies in a continuous set of frequencies

Bandwidth is the difference between the upper and lower frequencies in a continuous band of frequencies. It is typically measured in hertz, and depending on context, may specifically refer to passband bandwidth or baseband bandwidth. Passband bandwidth is the difference between the upper and lower cutoff frequencies of, for example, a band-pass filter, a communication channel, or a signal spectrum. Baseband bandwidth applies to a low-pass filter or baseband signal; the bandwidth is equal to its upper cutoff frequency.

In communications, a system is wideband when the message bandwidth significantly exceeds the coherence bandwidth of the channel. Some communication links have such a high data rate that they are forced to use a wide bandwidth; other links may have relatively low data rates, but deliberately use a wider bandwidth than "necessary" for that data rate in order to gain other advantages; see spread spectrum.

is defined as the breakdown voltage

is defined as the knee voltage

and typically

The loadline method is often used in RF power amplifier design. [4]

Related Research Articles

In electronics, the figures of merit of an amplifier are numerical measures that characterize its properties and performance. Figures of merit can be given as a list of specifications that include properties such as gain, bandwidth, noise and linearity, among others listed in this article. Figures of merit are important for determining the suitability of a particular amplifier for an intended use.

Amplifier electronic device that can increase the power of a signal

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the power of a signal. It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is a circuit that has a power gain greater than one.

Operational amplifier DC-coupled high-gain electronic voltage amplifier with a differential input and usually a single-ended output

An operational amplifier is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output. In this configuration, an op-amp produces an output potential that is typically hundreds of thousands of times larger than the potential difference between its input terminals. Operational amplifiers had their origins in analog computers, where they were used to perform mathematical operations in many linear, non-linear, and frequency-dependent circuits.

A low-noise amplifier (LNA) is an electronic amplifier that amplifies a very low-power signal without significantly degrading its signal-to-noise ratio. An amplifier increases the power of both the signal and the noise present at its input. LNAs are designed to minimize additional noise. Designers can minimize additional noise by using low-noise components, operating points, and circuit topologies. Minimizing additional noise must balance with other goals such as power gain and impedance matching.

Impedance matching practice in electronics

In electronics, impedance matching is the practice of designing the input impedance of an electrical load or the output impedance of its corresponding signal source to maximize the power transfer or minimize signal reflection from the load.

Valve amplifier type of electronic amplifier

A valve amplifier or tube amplifier is a type of electronic amplifier that uses vacuum tubes to increase the amplitude or power of a signal. Low to medium power valve amplifiers for frequencies below the microwaves were largely replaced by solid state amplifiers during the 1960s and 1970s. Valve amplifiers are used for applications such as guitar amplifiers, satellite transponders such as DirecTV and GPS, audiophile stereo amplifiers, military applications and very high power radio and UHF television transmitters.

Common emitter

In electronics, a common-emitter amplifier is one of three basic single-stage bipolar-junction-transistor (BJT) amplifier topologies, typically used as the voltage amplifier.

Antenna tuner

Antenna tuner, matchbox, transmatch, antenna tuning unit (ATU), antenna coupler, and feedline coupler are all equivalent names for a device connected between a radio and its antenna to improve power transfer between them by matching the specified load impedance of the radio to the combined input impedance of the feedline.

In electronics, especially audio and sound recording, a high impedance bridging, voltage bridging, or simply bridging connection is one in which the load impedance is much larger than the source impedance. In cases where only the load impedance can be varied, maximizing the load impedance serves to both minimize the current drawn by the load and maximize the voltage signal across load. Essentially, the load is measuring the source's voltage without affecting it. In cases where only the source impedance can be varied, minimizing the source impedance serves to maximize the power delivered to the load. A different configuration is an impedance matching connection in which the source and load impedances are either equal or complex conjugates. Such a configuration serves to either prevent reflections when transmission lines are involved, or to maximize power delivered to the load given an unchangeable source impedance.

Input impedance

The input impedance of an electrical network is the measure of the opposition to current (impedance), both static (resistance) and dynamic (reactance), into the load network that is external to the electrical source. The input admittance (1/impedance) is a measure of the load's propensity to draw current. The source network is the portion of the network that transmits power, and the load network is the portion of the network that consumes power.

Output impedance

The output impedance of an electrical network is the measure of the opposition to current flow (impedance), both static (resistance) and dynamic (reactance), into the load network being connected that is internal to the electrical source. The output impedance is a measure of the source's propensity to drop in voltage when the load draws current. The source network being the portion of the network that transmits and the load network being the portion of the network that consumes.

Dummy load

A dummy load is a device used to simulate an electrical load, usually for testing purposes. In radio a dummy antenna is connected to the output of a radio transmitter and electrically simulates an antenna, to allow the transmitter to be adjusted and tested without radiating radio waves. In audio systems a dummy load is connected to the output of an amplifier to electrically simulate a loudspeaker, allowing the amplifier to be tested without producing sound. Load banks are connected to electrical power supplies to simulate the supply's intended electrical load for testing purposes.

A Colpitts oscillator, invented in 1918 by American engineer Edwin H. Colpitts, is one of a number of designs for LC oscillators, electronic oscillators that use a combination of inductors (L) and capacitors (C) to produce an oscillation at a certain frequency. The distinguishing feature of the Colpitts oscillator is that the feedback for the active device is taken from a voltage divider made of two capacitors in series across the inductor.

Linear amplifier

A linear amplifier is an electronic circuit whose output is proportional to its input, but capable of delivering more power into a load. The term usually refers to a type of radio-frequency (RF) power amplifier, some of which have output power measured in kilowatts, and are used in amateur radio. Other types of linear amplifier are used in audio and laboratory equipment.

The cascode is a two-stage amplifier that consists of a common-emitter stage feeding into a common-base stage.

In electronics, the Miller effect accounts for the increase in the equivalent input capacitance of an inverting voltage amplifier due to amplification of the effect of capacitance between the input and output terminals. The virtually increased input capacitance due to the Miller effect is given by

A radio transmitter is an electronic device which, when connected to an antenna, produces an electromagnetic signal such as in radio and television broadcasting, two way communications or radar. Heating devices, such as a microwave oven, although of similar design, are not usually called transmitters, in that they use the electromagnetic energy locally rather than transmitting it to another location.

Distributed amplifier

Distributed amplifiers are circuit designs that incorporate transmission line theory into traditional amplifier design to obtain a larger gain-bandwidth product than is realizable by conventional circuits.

Valve RF amplifier

A valve RF amplifier or tube amplifier (U.S.), is a device for electrically amplifying the power of an electrical radio frequency signal.

Technical specifications and detailed information on the valve audio amplifier, including its development history.

References

  1. 1 2 Lee, Thomas (2003). The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge: Cambridge University Press. pp. 494–503.
  2. Cloutier, Stephen R. "Class E AM Transmitter Descriptions, Circuits, Etc". www.classeradio.com. WA1QIX. Retrieved 6 June 2015.
  3. MFJ Enterprises. "Ameritron ALS-1300 1200-watt NO TUNE TMOS-FET AMPLIFIER". MFJ Enterprises . Retrieved 6 June 2015.
  4. Matthew Ozalas (January 14, 2015). "How to Design an RF Power Amplifier: The Basics". youtube.com. Retrieved 2015-02-10.