RF power amplifier

Last updated

An RF power amplifier Graduate School Project (2870679632).jpg
An RF power amplifier
Class C VHF power amplifier based on the transistor MRF317 MFR317 FM amp.jpg
Class C VHF power amplifier based on the transistor MRF317

A radio-frequency power amplifier (RF power amplifier) is a type of electronic amplifier that converts a low-power radio-frequency (RF) signal into a higher-power signal. [1] Typically, RF power amplifiers are used in the final stage of a radio transmitter, their output driving the antenna. Design goals often include gain, power output, bandwidth, power efficiency, linearity (low signal compression at rated output), input and output impedance matching, and heat dissipation.

Contents

Amplifier classes

RF amplifier circuits operate in different modes, called "classes", based on how much of the cycle of the sinusoidal radio signal the amplifier (transistor or vacuum tube) is conducting current. Some classes are class A, class AB, class B, which are considered the linear amplifier classes in which the active device is used as a controlled current source, while class C is a nonlinear class in which the active device is used as a switch. The bias at the input of the active device determines the class of the amplifier.

A common trade-off in power amplifier design is the trade-off between efficiency and linearity. The previously named classes become more efficient, but less linear, in the order they are listed. Operating the active device as a switch results in higher efficiency, theoretically up to 100%, but lower linearity. [2] Among the switch-mode classes are class D, class F and class E. [3] The class D amplifier is not often used in RF applications because the finite switching speed of the active devices and possible charge storage in saturation could lead to a large I-V product, [2] which deteriorates efficiency.

Solid state vs. vacuum tube amplifiers

Modern RF power amplifiers use solid-state devices, predominantly MOSFETs (metal–oxide–semiconductor field-effect transistors). [4] [5] [6] The earliest MOSFET-based RF amplifiers date back to the mid-1960s. [7] Bipolar junction transistors were also commonly used in the past, up until they were replaced by power MOSFETs, particularly LDMOS transistors, as the standard technology for RF power amplifiers by the 1990s, [4] [6] due to the superior RF performance of LDMOS transistors. [6] Generally speaking, solid-state power amplifiers contain four main components: input, output, amplification stage and power supply. [8]

MOSFET transistors and other modern solid-state devices have replaced vacuum tubes in most electronic devices, but tubes are still used in some high-power transmitters (see Valve RF amplifier). Although mechanically robust, transistors are electrically fragile  they are easily damaged by excess voltage or current. Tubes are mechanically fragile but electrically robust  they can handle remarkably high electrical overloads without appreciable damage.

Applications

The basic applications of the RF power amplifier include driving to another high-power source, driving a transmitting antenna and exciting microwave cavity resonators. Among these applications, driving transmitter antennas is most well known. The transmitter–receivers are used not only for voice and data communication but also for weather sensing (in the form of a radar).[ citation needed ]

RF power amplifiers using LDMOS (laterally diffused MOSFET) are the most widely used power semiconductor devices in wireless telecommunication networks, particularly mobile networks. [4] [9] [6] LDMOS-based RF power amplifiers are widely used in digital mobile networks such as 2G, 3G, [4] [6] and 4G [9] and the good cost/performance ratio make them the preferred option for amateur radio. [10]

Wideband amplifier design

Impedance transformations over large bandwidth are difficult to realize, so conventionally, most wideband amplifiers are designed to feed a 50 Ω output load. Transistor output power is then limited to

where

is defined as the breakdown voltage,
is defined as the knee voltage,
is chosen so that the rated power can be met.

The external load is, by convention, Therefore, there must be some sort of impedance matching that transforms from to

The loadline method is often used in RF power amplifier design. [11]

See also

Related Research Articles

In electronics, the figures of merit of an amplifier are numerical measures that characterize its properties and performance. Figures of merit can be given as a list of specifications that include properties such as gain, bandwidth, noise and linearity, among others listed in this article. Figures of merit are important for determining the suitability of a particular amplifier for an intended use.

An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, powered by a direct current (DC) source. Oscillators are found in many electronic devices, such as radio receivers, television sets, radio and television broadcast transmitters, computers, computer peripherals, cellphones, radar, and many other devices.

<span class="mw-page-title-main">Amplifier</span> Electronic device/component that increases the strength of a signal

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal. It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is defined as a circuit that has a power gain greater than one.

<span class="mw-page-title-main">Operational amplifier</span> High-gain voltage amplifier with a differential input

An operational amplifier is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output. In this configuration, an op amp produces an output potential that is typically 100,000 times larger than the potential difference between its input terminals. The operational amplifier traces its origin and name to analog computers, where they were used to perform mathematical operations in linear, non-linear, and frequency-dependent circuits.

<span class="mw-page-title-main">Negative resistance</span> Property that an increasing voltage results in a decreasing current

In electronics, negative resistance (NR) is a property of some electrical circuits and devices in which an increase in voltage across the device's terminals results in a decrease in electric current through it.

<span class="mw-page-title-main">Impedance matching</span> Adjusting input/output impedances of an electrical circuit for some purpose

In electrical engineering, impedance matching is the practice of designing or adjusting the input impedance or output impedance of an electrical device for a desired value. Often, the desired value is selected to maximize power transfer or minimize signal reflection. For example, impedance matching typically is used to improve power transfer from a radio transmitter via the interconnecting transmission line to the antenna. Signals on a transmission line will be transmitted without reflections if the transmission line is terminated with a matching impedance.

<span class="mw-page-title-main">Valve amplifier</span> Type of electronic amplifier

A valve amplifier or tube amplifier is a type of electronic amplifier that uses vacuum tubes to increase the amplitude or power of a signal. Low to medium power valve amplifiers for frequencies below the microwaves were largely replaced by solid state amplifiers in the 1960s and 1970s. Valve amplifiers can be used for applications such as guitar amplifiers, satellite transponders such as DirecTV and GPS, high quality stereo amplifiers, military applications and very high power radio and UHF television transmitters.

<span class="mw-page-title-main">Input impedance</span> Measure of the opposition to current flow by an external electrical load

In electrical engineering, the input impedance of an electrical network is the measure of the opposition to current (impedance), both static (resistance) and dynamic (reactance), into a load network that is external to the electrical source network. The input admittance is a measure of the load network's propensity to draw current. The source network is the portion of the network that transmits power, and the load network is the portion of the network that consumes power.

A Colpitts oscillator, invented in 1918 by Canadian-American engineer Edwin H. Colpitts, is one of a number of designs for LC oscillators, electronic oscillators that use a combination of inductors (L) and capacitors (C) to produce an oscillation at a certain frequency. The distinguishing feature of the Colpitts oscillator is that the feedback for the active device is taken from a voltage divider made of two capacitors in series across the inductor.

<span class="mw-page-title-main">Class-D amplifier</span> Audio amplifier based on switching

A class-D amplifier or switching amplifier is an electronic amplifier in which the amplifying devices operate as electronic switches, and not as linear gain devices as in other amplifiers. They operate by rapidly switching back and forth between the supply rails, using pulse-width modulation, pulse-density modulation, or related techniques to produce a pulse train output. This passes through a simple low-pass filter which blocks the high-frequency pulses and provides analog output current and voltage. Because they are always either in fully on or fully off modes, little energy is dissipated in the transistors and efficiency can exceed 90%.

<span class="mw-page-title-main">Linear amplifier</span> Electronic circuit

A linear amplifier is an electronic circuit whose output is proportional to its input, but capable of delivering more power into a load. The term usually refers to a type of radio-frequency (RF) power amplifier, some of which have output power measured in kilowatts, and are used in amateur radio. Other types of linear amplifier are used in audio and laboratory equipment. Linearity refers to the ability of the amplifier to produce signals that are accurate copies of the input. A linear amplifier responds to different frequency components independently, and tends not to generate harmonic distortion or intermodulation distortion. No amplifier can provide perfect linearity however, because the amplifying devices—transistors or vacuum tubes—follow nonlinear transfer function and rely on circuitry techniques to reduce those effects. There are a number of amplifier classes providing various trade-offs between implementation cost, efficiency, and signal accuracy.

The cascode is a two-stage amplifier that consists of a common-emitter stage feeding into a common-base stage.

<span class="mw-page-title-main">Power MOSFET</span> MOSFET that can handle significant power levels

A power MOSFET is a specific type of metal–oxide–semiconductor field-effect transistor (MOSFET) designed to handle significant power levels. Compared to the other power semiconductor devices, such as an insulated-gate bipolar transistor (IGBT) or a thyristor, its main advantages are high switching speed and good efficiency at low voltages. It shares with the IGBT an isolated gate that makes it easy to drive. They can be subject to low gain, sometimes to a degree that the gate voltage needs to be higher than the voltage under control.

This article illustrates some typical operational amplifier applications. A non-ideal operational amplifier's equivalent circuit has a finite input impedance, a non-zero output impedance, and a finite gain. A real op-amp has a number of non-ideal features as shown in the diagram, but here a simplified schematic notation is used, many details such as device selection and power supply connections are not shown. Operational amplifiers are optimised for use with negative feedback, and this article discusses only negative-feedback applications. When positive feedback is required, a comparator is usually more appropriate. See Comparator applications for further information.

A radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. Radio waves are electromagnetic waves with frequencies between about 30 Hz and 300 GHz. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves. Transmitters are necessary parts of all systems that use radio: radio and television broadcasting, cell phones, wireless networks, radar, two way radios like walkie talkies, radio navigation systems like GPS, remote entry systems, among numerous other uses.

A Wilson current mirror is a three-terminal circuit that accepts an input current at the input terminal and provides a "mirrored" current source or sink output at the output terminal. The mirrored current is a precise copy of the input current. It may be used as a Wilson current source by applying a constant bias current to the input branch as in Fig. 2. The circuit is named after George R. Wilson, an integrated circuit design engineer who worked for Tektronix. Wilson devised this configuration in 1967 when he and Barrie Gilbert challenged each other to find an improved current mirror overnight that would use only three transistors. Wilson won the challenge.

<span class="mw-page-title-main">Valve RF amplifier</span> Device for electrically amplifying the power of an electrical radio frequency signal

A valve RF amplifier or tube amplifier (U.S.) is a device for electrically amplifying the power of an electrical radio frequency signal.

LDMOS is a planar double-diffused MOSFET used in amplifiers, including microwave power amplifiers, RF power amplifiers and audio power amplifiers. These transistors are often fabricated on p/p+ silicon epitaxial layers. The fabrication of LDMOS devices mostly involves various ion-implantation and subsequent annealing cycles. As an example, the drift region of this power MOSFET is fabricated using up to three ion implantation sequences in order to achieve the appropriate doping profile needed to withstand high electric fields.

<span class="mw-page-title-main">Tube sound</span> Characteristic quality of sounds from vacuum tube amplifiers

Tube sound is the characteristic sound associated with a vacuum tube amplifier, a vacuum tube-based audio amplifier. At first, the concept of tube sound did not exist, because practically all electronic amplification of audio signals was done with vacuum tubes and other comparable methods were not known or used. After introduction of solid state amplifiers, tube sound appeared as the logical complement of transistor sound, which had some negative connotations due to crossover distortion in early transistor amplifiers. However, solid state amplifiers have been developed to be flawless and the sound is later regarded neutral compared to tube amplifiers. Thus the tube sound now means 'euphonic distortion.' The audible significance of tube amplification on audio signals is a subject of continuing debate among audio enthusiasts.

In electronics, power amplifier classes are letter symbols applied to different power amplifier types. The class gives a broad indication of an amplifier's characteristics and performance. The first three classes are related to the time period that the active amplifier device is passing current, expressed as a fraction of the period of a signal waveform applied to the input. This metric is known as conduction angle (θ). A class A amplifier is conducting through all the period of the signal (θ=360°); Class B only for one-half the input period (θ=180°), class C for much less than half the input period (θ<180°). Class D amplifiers operate their output device in a switching manner; the fraction of the time that the device is conducting may be adjusted so a pulse-width modulation output can be obtained from the stage.

References

  1. "RF Amplifiers". info.apitech.com. Retrieved 18 May 2021.
  2. 1 2 Lee, Thomas (2003). The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge, UK: Cambridge University Press. pp. 494–503.
  3. Cloutier, Stephen R. (WA1QIX). "Class E, AM transmitter descriptions, circuits, etc". www.classeradio.com. WA1QIX. Retrieved 6 June 2015 via qrz.com.{{cite web}}: CS1 maint: numeric names: authors list (link)
  4. 1 2 3 4 Baliga, B. Jayant (2005). Silicon RF Power MOSFETs. World Scientific. p. 1. ISBN   9789812561213.
  5. "Ameritron ALS-1300: 1200 Watt no-tune TMOS-FET amplifier". product information downloads. MFJ Enterprises. Archived from the original on 23 April 2014. Retrieved 6 June 2015.
  6. 1 2 3 4 5 Perugupalli, Prasanth; Leighton, Larry; Johansson, Jan; Chen, Qiang (2001). "LDMOS RF power transistors and their applications" (PDF). In Dye, Norman; Granberg, Helge (eds.). Radio Frequency Transistors: Principles and practical applications. Elsevier. pp. 259–92. ISBN   9780080497945.
  7. Austin, W. M.; Dean, J. A.; Griswold, D. M.; Hart, O. P. (November 1966). "TV Applications of MOS Transistors". IEEE Transactions on Broadcast and Television Receivers. 12 (4): 68–76. doi:10.1109/TBTR1.1966.4320029.
  8. UTE I. VON MEHLEM, ROBERT E. WALLIS (1989). "SOLID-STATE POWER AMPLIFIERS FOR SATELLITE RADAR ALTIMETERS" (PDF). Johns Hopkins University.
  9. 1 2 Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. p. 134. ISBN   9780429881343.
  10. "A 600W broadband HF/6m amplifier using affordable LDMOS devices". 27 October 2019.
  11. Ozalas, Matthew (14 January 2015). How to design an RF power amplifier – the basics (short how-to video). Retrieved 10 February 2015 via youtube.com.