Rad50

Last updated
RAD50
Identifiers
Aliases RAD50 , NBSLD, RAD502, hRad50, Rad50, RAD50 double strand break repair protein
External IDs OMIM: 604040, 613078 MGI: 109292 HomoloGene: 38092 GeneCards: RAD50
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_133482
NM_005732

NM_009012

RefSeq (protein)

NP_005723

n/a

Location (UCSC) Chr 5: 132.56 – 132.65 Mb Chr 11: 53.54 – 53.6 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

DNA repair protein RAD50, also known as RAD50, is a protein that in humans is encoded by the RAD50 gene. [5]

Contents

Function

The protein encoded by this gene is highly similar to Saccharomyces cerevisiae Rad50, a protein involved in DNA double-strand break repair. This protein forms a complex with MRE11 and NBS1 (also known as Xrs2 in yeast). This MRN complex (MRX complex in yeast) binds to broken DNA ends and displays numerous enzymatic activities that are required for double-strand break repair by nonhomologous end-joining or homologous recombination. Gene knockout studies of the mouse homolog of Rad50 suggest it is essential for cell growth and viability. Two alternatively spliced transcript variants of Rad50, which encode distinct proteins, have been reported. [5]

Structure

Rad50 is a member of the structural maintenance of chromosomes (SMC) family of proteins. [6] Like other SMC proteins, Rad50 contains a long internal coiled-coil domain that folds back on itself, bringing the N- and C-termini together to form a globular ABC ATPase head domain. Rad50 can dimerize both through its head domain and through a zinc-binding dimerization motif at the opposite end of the coiled-coil known as the “zinc-hook”. [7] Results from atomic force microscopy suggest that in free Mre11-Rad50-Nbs1 complexes, the zinc-hooks of a single Rad50 dimer associate to form a closed loop, while the zinc-hooks snap apart upon binding DNA, adopting a conformation that is thought to enable zinc-hook-mediated tethering of broken DNA ends. [8]

Interactions

Rad50 has been shown to interact with:

Evolutionary ancestry

Rad50 protein has been mainly studied in eukaryotes. However, recent work has shown that orthologs of the Rad50 protein are also conserved in extant prokaryotic archaea where they likely function in homologous recombinational repair. [20] In the hyperthermophilic archeon Sulfolobus acidocaldarius , the Rad50 and Mre11 proteins interact and appear to have an active role in repair of DNA damages introduced by gamma radiation. [21] These findings suggest that eukaryotic Rad50 may be descended from an ancestral archaeal Rad50 protein that served a role in homologous recombinational repair of DNA damage.

Diseases

Human RAD50 deficiency is an autosomal recessive syndrome that has been reported in patients with microcephaly and short stature. Their clinical phenotype resembled Nijmegen Breakage Syndrome. Cells from these patients showed increased radiosensitity with an impaired response to chromosome breaks. [22] [23] [24]

See also

Related Research Articles

<span class="mw-page-title-main">BRCA1</span> Gene known for its role in breast cancer

Breast cancer type 1 susceptibility protein is a protein that in humans is encoded by the BRCA1 gene. Orthologs are common in other vertebrate species, whereas invertebrate genomes may encode a more distantly related gene. BRCA1 is a human tumor suppressor gene and is responsible for repairing DNA.

<span class="mw-page-title-main">Non-homologous end joining</span> Pathway that repairs double-strand breaks in DNA

Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. It is called "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology directed repair (HDR), which requires a homologous sequence to guide repair. NHEJ is active in both non-dividing and proliferating cells, while HDR is not readily accessible in non-dividing cells. The term "non-homologous end joining" was coined in 1996 by Moore and Haber.

A DNA repair-deficiency disorder is a medical condition due to reduced functionality of DNA repair.

<span class="mw-page-title-main">Nibrin</span> Protein-coding gene in the species Homo sapiens

Nibrin, also known as NBN or NBS1, is a protein which in humans is encoded by the NBN gene.

<span class="mw-page-title-main">H2AFX</span> Histone protein from the H2A family

H2A histone family member X is a type of histone protein from the H2A family encoded by the H2AFX gene. An important phosphorylated form is γH2AX (S139), which forms when double-strand breaks appear.

<span class="mw-page-title-main">Replication protein A1</span> Protein-coding gene in the species Homo sapiens

Replication protein A 70 kDa DNA-binding subunit is a protein that in humans is encoded by the RPA1 gene.

<span class="mw-page-title-main">MRE11A</span> Protein-coding gene in the species Homo sapiens

Double-strand break repair protein MRE11 is an enzyme that in humans is encoded by the MRE11 gene. The gene has been designated MRE11A to distinguish it from the pseudogene MRE11B that is nowadays named MRE11P1.

<span class="mw-page-title-main">MCM4</span> Protein-coding gene in the species Homo sapiens

DNA replication licensing factor MCM4 is a protein that in humans is encoded by the MCM4 gene.

<span class="mw-page-title-main">Transformation/transcription domain-associated protein</span> Protein-coding gene in the species Homo sapiens

Transformation/transcription domain-associated protein, also known as TRRAP, is a protein that in humans is encoded by the TRRAP gene. TRRAP belongs to the phosphatidylinositol 3-kinase-related kinase protein family.

<span class="mw-page-title-main">Bloom syndrome protein</span> Mammalian protein found in humans

Bloom syndrome protein is a protein that in humans is encoded by the BLM gene and is not expressed in Bloom syndrome.

<span class="mw-page-title-main">CTBP1</span> Protein-coding gene in the species Homo sapiens

C-terminal-binding protein 1 also known as CtBP1 is a protein that in humans is encoded by the CTBP1 gene. CtBP1 is one of two CtBP proteins, the other protein being CtBP2.

<span class="mw-page-title-main">FANCG</span> Protein-coding gene in the species Homo sapiens

Fanconi anemia group G protein is a protein that in humans is encoded by the FANCG gene.

<span class="mw-page-title-main">MDC1</span> Protein-coding gene in the species Homo sapiens

Mediator of DNA damage checkpoint protein 1 is a 2080 amino acid long protein that in humans is encoded by the MDC1 gene located on the short arm (p) of chromosome 6. MDC1 protein is a regulator of the Intra-S phase and the G2/M cell cycle checkpoints and recruits repair proteins to the site of DNA damage. It is involved in determining cell survival fate in association with tumor suppressor protein p53. This protein also goes by the name Nuclear Factor with BRCT Domain 1 (NFBD1).

<span class="mw-page-title-main">RBBP8</span> Protein-coding gene in the species Homo sapiens

Retinoblastoma-binding protein 8 is a protein that in humans is encoded by the RBBP8 gene.

<span class="mw-page-title-main">RAD51L3</span> Protein-coding gene in the species Homo sapiens

DNA repair protein RAD51 homolog 4 is a protein that in humans is encoded by the RAD51L3 gene.

<span class="mw-page-title-main">TERF2IP</span> Protein-coding gene in the species Homo sapiens

Telomeric repeat-binding factor 2-interacting protein 1 also known as repressor activator protein 1 (Rap1) is a protein that in humans is encoded by the TERF2IP gene.

<span class="mw-page-title-main">FANCL</span> Protein-coding gene in the species Homo sapiens

E3 ubiquitin-protein ligase FANCL is an enzyme that in humans is encoded by the FANCL gene.

<span class="mw-page-title-main">RNF8</span> Protein-coding gene in the species Homo sapiens

E3 ubiquitin-protein ligase RNF8 is an enzyme that in humans is encoded by the RNF8 gene. RNF8 has activity both in immune system functions and in DNA repair.

<span class="mw-page-title-main">MCM8</span> Protein-coding gene in the species Homo sapiens

DNA replication licensing factor MCM8 is a protein that in humans is encoded by the MCM8 gene.

The MRN complex is a protein complex consisting of Mre11, Rad50 and Nbs1. In eukaryotes, the MRN/X complex plays an important role in the initial processing of double-strand DNA breaks prior to repair by homologous recombination or non-homologous end joining. The MRN complex binds avidly to double-strand breaks both in vitro and in vivo and may serve to tether broken ends prior to repair by non-homologous end joining or to initiate DNA end resection prior to repair by homologous recombination. The MRN complex also participates in activating the checkpoint kinase ATM in response to DNA damage. Production of short single-strand oligonucleotides by Mre11 endonuclease activity has been implicated in ATM activation by the MRN complex.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000113522 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000020380 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: RAD50 RAD50 homolog (S. cerevisiae)".
  6. Kinoshita E, van der Linden E, Sanchez H, Wyman C (2009). "RAD50, an SMC family member with multiple roles in DNA break repair: how does ATP affect function?". Chromosome Res. 17 (2): 277–88. doi:10.1007/s10577-008-9018-6. PMC   4494100 . PMID   19308707.
  7. Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T, Owen BA, Karcher A, Henderson B, Bodmer JL, McMurray CT, Carney JP, Petrini JH, Tainer JA (August 2002). "The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair". Nature. 418 (6897): 562–6. Bibcode:2002Natur.418..562H. doi:10.1038/nature00922. PMID   12152085. S2CID   4414704.
  8. Moreno-Herrero F, de Jager M, Dekker NH, Kanaar R, Wyman C, Dekker C (September 2005). "Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA". Nature. 437 (7057): 440–3. Bibcode:2005Natur.437..440M. doi:10.1038/nature03927. PMID   16163361. S2CID   4357195.
  9. 1 2 3 Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (2000). "BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures". Genes Dev. 14 (8): 927–39. doi:10.1101/gad.14.8.927. PMC   316544 . PMID   10783165.
  10. 1 2 Chiba N, Parvin JD (2001). "Redistribution of BRCA1 among four different protein complexes following replication blockage". J. Biol. Chem. 276 (42): 38549–54. doi: 10.1074/jbc.M105227200 . PMID   11504724.
  11. Zhong Q, Chen CF, Li S, Chen Y, Wang CC, Xiao J, Chen PL, Sharp ZD, Lee WH (1999). "Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response". Science. 285 (5428): 747–50. doi:10.1126/science.285.5428.747. PMID   10426999.
  12. Dolganov GM, Maser RS, Novikov A, Tosto L, Chong S, Bressan DA, Petrini JH (1996). "Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair". Mol. Cell. Biol. 16 (9): 4832–41. doi:10.1128/MCB.16.9.4832. PMC   231485 . PMID   8756642.
  13. 1 2 Trujillo KM, Yuan SS, Lee EY, Sung P (1998). "Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95". J. Biol. Chem. 273 (34): 21447–50. doi: 10.1074/jbc.273.34.21447 . PMID   9705271.
  14. Goedecke W, Eijpe M, Offenberg HH, van Aalderen M, Heyting C (1999). "Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis". Nat. Genet. 23 (2): 194–8. doi:10.1038/13821. PMID   10508516. S2CID   13443404.
  15. Cerosaletti KM, Concannon P (2003). "Nibrin forkhead-associated domain and breast cancer C-terminal domain are both required for nuclear focus formation and phosphorylation". J. Biol. Chem. 278 (24): 21944–51. doi: 10.1074/jbc.M211689200 . PMID   12679336.
  16. Desai-Mehta A, Cerosaletti KM, Concannon P (2001). "Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization". Mol. Cell. Biol. 21 (6): 2184–91. doi:10.1128/MCB.21.6.2184-2191.2001. PMC   86852 . PMID   11238951.
  17. Xiao J, Liu CC, Chen PL, Lee WH (2001). "RINT-1, a novel Rad50-interacting protein, participates in radiation-induced G(2)/M checkpoint control". J. Biol. Chem. 276 (9): 6105–11. doi: 10.1074/jbc.M008893200 . PMID   11096100.
  18. 1 2 O'Connor MS, Safari A, Liu D, Qin J, Songyang Z (2004). "The human Rap1 protein complex and modulation of telomere length". J. Biol. Chem. 279 (27): 28585–91. doi: 10.1074/jbc.M312913200 . PMID   15100233.
  19. Zhu XD, Küster B, Mann M, Petrini JH, de Lange T (2000). "Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres". Nat. Genet. 25 (3): 347–52. doi:10.1038/77139. PMID   10888888. S2CID   6689794.
  20. White MF (January 2011). "Homologous recombination in the archaea: the means justify the ends". Biochem. Soc. Trans. 39 (1): 15–9. doi:10.1042/BST0390015. PMID   21265740. S2CID   239399.
  21. Quaiser A, Constantinesco F, White MF, Forterre P, Elie C (2008). "The Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus acidocaldarius". BMC Mol. Biol. 9: 25. doi: 10.1186/1471-2199-9-25 . PMC   2288612 . PMID   18294364.
  22. Waltes R, Kalb R, Gatei M, Kijas AW, Stumm M, Sobeck A, Wieland B, Varon R, Lerenthal Y, Lavin MF, Schindler D, Dörk T (2009). "Human RAD50 deficiency in a Nijmegen Breakage Syndrome-like disorder". Am. J. Hum. Genet. 84 (5): 605–16. doi:10.1016/j.ajhg.2009.04.010. PMC   2681000 . PMID   19409520.
  23. Ragamin A, Yigit G, Bousset K, Beleggia F, Verheijen FW, de Wit MY, Strom TM, Dörk T, Wollnik B, Mancini GM (2020). "Human RAD50 deficiency: Confirmation of a distinctive phenotype". Am. J. Med. Genet. 182 (6): 1378–86. doi:10.1002/ajmg.a.61570. PMC   7318339 . PMID   32212377.
  24. Chansel-Da Cruz M, Hohl M, Ceppi I, Kermasson L, Maggiorella L, Modesti M, de Villartay J, Ileri T, Cejka P, Petrini J, Revy P (2020). "A Disease-Causing Single Amino Acid Deletion in the Coiled-Coil Domain of RAD50 Impairs MRE11 Complex Functions in Yeast and Humans". Cell Rep. 33 (13): 108559. doi:10.1016/j.celrep.2020.108559. PMC   7788285 . PMID   33378670.

Further reading