A ratio distribution (also known as a quotient distribution) is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two (usually independent) random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.
An example is the Cauchy distribution (also called the normal ratio distribution), which comes about as the ratio of two normally distributed variables with zero mean. Two other distributions often used in test-statistics are also ratio distributions: the t-distribution arises from a Gaussian random variable divided by an independent chi-distributed random variable, while the F-distribution originates from the ratio of two independent chi-squared distributed random variables. More general ratio distributions have been considered in the literature.[1][2][3][4][5][6][7][8][9]
Often the ratio distributions are heavy-tailed, and it may be difficult to work with such distributions and develop an associated statistical test. A method based on the median has been suggested as a "work-around".[10]
The ratio is one type of algebra for random variables: Related to the ratio distribution are the product distribution, sum distribution and difference distribution. More generally, one may talk of combinations of sums, differences, products and ratios. Many of these distributions are described in Melvin D. Springer's book from 1979 The Algebra of Random Variables.[8]
The algebraic rules known with ordinary numbers do not apply for the algebra of random variables. For example, if a product is C = AB and a ratio is D=C/A it does not necessarily mean that the distributions of D and B are the same. Indeed, a peculiar effect is seen for the Cauchy distribution: The product and the ratio of two independent Cauchy distributions (with the same scale parameter and the location parameter set to zero) will give the same distribution.[8] This becomes evident when regarding the Cauchy distribution as itself a ratio distribution of two Gaussian distributions of zero means: Consider two Cauchy random variables, and each constructed from two Gaussian distributions and then
where . The first term is the ratio of two Cauchy distributions while the last term is the product of two such distributions.
Derivation
A way of deriving the ratio distribution of from the joint distribution of the two other random variables X , Y , with joint pdf , is by integration of the following form[3]
If the two variables are independent then and this becomes
This may not be straightforward. By way of example take the classical problem of the ratio of two standard Gaussian samples. The joint pdf is
Defining we have
Using the known definite integral we get
which is the Cauchy distribution, or Student's t distribution with n = 1
The Mellin transform has also been suggested for derivation of ratio distributions.[8]
In the case of positive independent variables, proceed as follows. The diagram shows a separable bivariate distribution which has support in the positive quadrant and we wish to find the pdf of the ratio . The hatched volume above the line represents the cumulative distribution of the function multiplied with the logical function . The density is first integrated in horizontal strips; the horizontal strip at height y extends from x = 0 to x = Ry and has incremental probability . Secondly, integrating the horizontal strips upward over all y yields the volume of probability above the line
Finally, differentiate with respect to to get the pdf .
Move the differentiation inside the integral:
and since
then
As an example, find the pdf of the ratio R when
We have
thus
Differentiation wrt. R yields the pdf of R
Moments of random ratios
From Mellin transform theory, for distributions existing only on the positive half-line , we have the product identity provided are independent. For the case of a ratio of samples like , in order to make use of this identity it is necessary to use moments of the inverse distribution. Set such that . Thus, if the moments of and can be determined separately, then the moments of can be found. The moments of are determined from the inverse pdf of , often a tractable exercise. At simplest, .
is sampled from an inverse Gamma distribution with parameter and has pdf . The moments of this pdf are
Multiplying the corresponding moments gives
Independently, it is known that the ratio of the two Gamma samples follows the Beta Prime distribution:
whose moments are
Substituting we have which is consistent with the product of moments above.
Means and variances of random ratios
In the Product distribution section, and derived from Mellin transform theory (see section above), it is found that the mean of a product of independent variables is equal to the product of their means. In the case of ratios, we have
which, in terms of probability distributions, is equivalent to
Note that i.e.,
The variance of a ratio of independent variables is
When X and Y are independent and have a Gaussian distribution with zero mean, the form of their ratio distribution is a Cauchy distribution. This can be derived by setting then showing that has circular symmetry. For a bivariate uncorrelated Gaussian distribution we have
If is a function only of r then is uniformly distributed on with density so the problem reduces to finding the probability distribution of Z under the mapping
We have, by conservation of probability
and since
and setting we get
There is a spurious factor of 2 here. Actually, two values of spaced by map onto the same value of z, the density is doubled, and the final result is
When either of the two Normal distributions is non-central then the result for the distribution of the ratio is much more complicated and is given below in the succinct form presented by David Hinkley.[6] The trigonometric method for a ratio does however extend to radial distributions like bivariate normals or a bivariate Student t in which the density depends only on radius . It does not extend to the ratio of two independent Student t distributions which give the Cauchy ratio shown in a section below for one degree of freedom.
Uncorrelated noncentral normal ratio
In the absence of correlation , the probability density function of the two normal variables X = N(μX, σX2) and Y = N(μY, σY2) ratio Z = X/Y is given exactly by the following expression, derived in several sources:[6]
Under several assumptions (usually fulfilled in practical applications), it is possible to derive a highly accurate solid approximation to the PDF. Main benefits are reduced formulae complexity, closed-form CDF, simple defined median, well defined error management, etc... For the sake of simplicity let's introduce parameters: , and . Then so called solid approximation to the uncorrelated noncentral normal ratio PDF is expressed by equation [11]
Under certain conditions, a normal approximation is possible, with variance:[12]
Correlated central normal ratio
The above expression becomes more complicated when the variables X and Y are correlated. If but and the more general Cauchy distribution is obtained
A transformation to the log domain was suggested by Katz(1978) (see binomial section below). Let the ratio be
.
Take logs to get
Since then asymptotically
Alternatively, Geary (1930) suggested that
has approximately a standard Gaussian distribution:[1] This transformation has been called the Geary–Hinkley transformation;[7] the approximation is good if Y is unlikely to assume negative values, basically .
This is developed by Dale (Springer 1979 problem 4.28) and Hinkley 1969. Geary showed how the correlated ratio could be transformed into a near-Gaussian form and developed an approximation for dependent on the probability of negative denominator values being vanishingly small. Fieller's later correlated ratio analysis is exact but care is needed when combining modern math packages with verbal conditions in the older literature. Pham-Ghia has exhaustively discussed these methods. Hinkley's correlated results are exact but it is shown below that the correlated ratio condition can also be transformed into an uncorrelated one so only the simplified Hinkley equations above are required, not the full correlated ratio version.
Let the ratio be:
in which are zero-mean correlated normal variables with variances and have means Write such that become uncorrelated and has standard deviation
The ratio:
is invariant under this transformation and retains the same pdf. The term in the numerator appears to be made separable by expanding:
to get
in which and z has now become a ratio of uncorrelated non-central normal samples with an invariant z-offset (this is not formally proven, though appears to have been used by Geary),
Finally, to be explicit, the pdf of the ratio for correlated variables is found by inputting the modified parameters and into the Hinkley equation above which returns the pdf for the correlated ratio with a constant offset on .
Contours of the correlated bivariate Gaussian distribution (not to scale) giving ratio x/y
pdf of the Gaussian ratio z and a simulation (points) for
The figures above show an example of a positively correlated ratio with in which the shaded wedges represent the increment of area selected by given ratio which accumulates probability where they overlap the distribution. The theoretical distribution, derived from the equations under discussion combined with Hinkley's equations, is highly consistent with a simulation result using 5,000 samples. In the top figure it is clear that for a ratio the wedge has almost bypassed the main distribution mass altogether and this explains the local minimum in the theoretical pdf . Conversely as moves either toward or away from one the wedge spans more of the central mass, accumulating a higher probability.
Complex normal ratio
The ratio of correlated zero-mean circularly symmetric complex normal distributed variables was determined by Baxley et al.[13] and has since been extended to the nonzero-mean and nonsymmetric case.[14] In the correlated zero-mean case, the joint distribution of x, y is
where
is an Hermitian transpose and
The PDF of is found to be
In the usual event that we get
Further closed-form results for the CDF are also given.
The graph shows the pdf of the ratio of two complex normal variables with a correlation coefficient of . The pdf peak occurs at roughly the complex conjugate of a scaled down .
Ratio of log-normal
The ratio of independent or correlated log-normals is log-normal. This follows, because if and are log-normally distributed, then and are normally distributed. If they are independent or their logarithms follow a bivarate normal distribution, then the logarithm of their ratio is the difference of independent or correlated normally distributed random variables, which is normally distributed.[note 1]
This is important for many applications requiring the ratio of random variables that must be positive, where joint distribution of and is adequately approximated by a log-normal. This is a common result of the multiplicative central limit theorem, also known as Gibrat's law, when is the result of an accumulation of many small percentage changes and must be positive and approximately log-normally distributed.[15]
If two independent random variables, X and Y each follow a Cauchy distribution with median equal to zero and shape factor
then the ratio distribution for the random variable is[16]
This distribution does not depend on and the result stated by Springer[8] (p158 Question 4.6) is not correct. The ratio distribution is similar to but not the same as the product distribution of the random variable :
More generally, if two independent random variables X and Y each follow a Cauchy distribution with median equal to zero and shape factor and respectively, then:
The ratio distribution for the random variable is[16]
If X has a standard normal distribution and Y has a standard uniform distribution, then Z=X/Y has a distribution known as the slash distribution, with probability density function
where φ(z) is the probability density function of the standard normal distribution.[17]
defines , Fisher's F density distribution, the PDF of the ratio of two Chi-squares with m, n degrees of freedom.
The CDF of the Fisher density, found in F-tables is defined in the beta prime distribution article. If we enter an F-test table with m = 3, n = 4 and 5% probability in the right tail, the critical value is found to be 6.59. This coincides with the integral
For gamma distributionsU and V with arbitrary shape parametersα1 and α2 and their scale parameters both set to unity, that is, , where , then
If , then . Note that here θ is a scale parameter, rather than a rate parameter.
If , then by rescaling the parameter to unity we have
which includes the regular gamma, chi, chi-squared, exponential, Rayleigh, Nakagami and Weibull distributions involving fractional powers. Note that here a is a scale parameter, rather than a rate parameter; d is a shape parameter.
In the ratios above, Gamma samples, U, V may have differing sample sizes but must be drawn from the same distribution with equal scaling .
In situations where U and V are differently scaled, a variables transformation allows the modified random ratio pdf to be determined. Let where arbitrary and, from above, .
Rescale V arbitrarily, defining
We have and substitution into Y gives
Transforming X to Y gives
Noting we finally have
Thus, if and then is distributed as with
The distribution of Y is limited here to the interval [0,1]. It can be generalized by scaling such that if then
where
is then a sample from
Reciprocals of samples from beta distributions
Though not ratio distributions of two variables, the following identities for one variable are useful:
Then is approximately normally distributed with mean and variance .
The binomial ratio distribution is of significance in clinical trials: if the distribution of T is known as above, the probability of a given ratio arising purely by chance can be estimated, i.e. a false positive trial. A number of papers compare the robustness of different approximations for the binomial ratio.[citation needed]
Poisson and truncated Poisson distributions
In the ratio of Poisson variables R = X/Y there is a problem that Y is zero with finite probability so R is undefined. To counter this, consider the truncated, or censored, ratio R' = X/Y' where zero sample of Y are discounted. Moreover, in many medical-type surveys, there are systematic problems with the reliability of the zero samples of both X and Y and it may be good practice to ignore the zero samples anyway.
The probability of a null Poisson sample being , the generic pdf of a left truncated Poisson distribution is
which sums to unity. Following Cohen,[21] for n independent trials, the multidimensional truncated pdf is
and the log likelihood becomes
On differentiation we get
and setting to zero gives the maximum likelihood estimate
Note that as then so the truncated maximum likelihood estimate, though correct for both truncated and untruncated distributions, gives a truncated mean value which is highly biassed relative to the untruncated one. Nevertheless it appears that is a sufficient statistic for since depends on the data only through the sample mean in the previous equation which is consistent with the methodology of the conventional Poisson distribution.
Absent any closed form solutions, the following approximate reversion for truncated is valid over the whole range .
which compares with the non-truncated version which is simply . Taking the ratio is a valid operation even though may use a non-truncated model while has a left-truncated one.
Then substituting from the equation above, we get Cohen's variance estimate
The variance of the point estimate of the mean , on the basis of n trials, decreases asymptotically to zero as n increases to infinity. For small it diverges from the truncated pdf variance in Springael[22] for example, who quotes a variance of
for n samples in the left-truncated pdf shown at the top of this section. Cohen showed that the variance of the estimate relative to the variance of the pdf, , ranges from 1 for large (100% efficient) up to 2 as approaches zero (50% efficient).
These mean and variance parameter estimates, together with parallel estimates for X, can be applied to Normal or Binomial approximations for the Poisson ratio. Samples from trials may not be a good fit for the Poisson process; a further discussion of Poisson truncation is by Dietz and Bohning[23] and there is a Zero-truncated Poisson distribution Wikipedia entry.
Double Lomax distribution
This distribution is the ratio of two Laplace distributions.[24] Let X and Y be standard Laplace identically distributed random variables and let z = X / Y. Then the probability distribution of z is
Let the mean of the X and Y be a. Then the standard double Lomax distribution is symmetric around a.
This distribution has an infinite mean and variance.
If Z has a standard double Lomax distribution, then 1/Z also has a standard double Lomax distribution.
The standard Lomax distribution is unimodal and has heavier tails than the Laplace distribution.
is proportional to the product of independent F random variables. In the case where X and Y are from independent standardized Wishart distributions then the ratio
Ratios of Quadratic Forms involving Wishart Matrices
In relation to Wishart matrix distributions if is a sample Wishart matrix and vector is arbitrary, but statistically independent, corollary 3.2.9 of Muirhead[26] states
The discrepancy of one in the sample numbers arises from estimation of the sample mean when forming the sample covariance, a consequence of Cochran's theorem. Similarly
↑ Note, however, that and can be individually log-normally distributed without having a bivariate log-normal distribution. As of 2022-06-08 the Wikipedia article on "Copula (probability theory)" includes a density and contour plot of two Normal marginals joint with a Gumbel copula, where the joint distribution is not bivariate normal.
Related Research Articles
In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the dimensionless change in magnitude or phase per unit length. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.
In probability theory and statistics, the Weibull distribution is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.
Linear elasticity is a mathematical model as to how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.
In Bayesian statistics, the Jeffreys prior is a non-informative prior distribution for a parameter space. Named after Sir Harold Jeffreys, its density function is proportional to the square root of the determinant of the Fisher information matrix:
In probability theory and statistics, the beta prime distribution is an absolutely continuous probability distribution. If has a beta distribution, then the odds has a beta prime distribution.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.
In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.
The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.
The shifted log-logistic distribution is a probability distribution also known as the generalized log-logistic or the three-parameter log-logistic distribution. It has also been called the generalized logistic distribution, but this conflicts with other uses of the term: see generalized logistic distribution.
The term generalized logistic distribution is used as the name for several different families of probability distributions. For example, Johnson et al. list four forms, which are listed below.
In probability theory and statistics, the normal-inverse-gamma distribution is a four-parameter family of multivariate continuous probability distributions. It is the conjugate prior of a normal distribution with unknown mean and variance.
Financial models with long-tailed distributions and volatility clustering have been introduced to overcome problems with the realism of classical financial models. These classical models of financial time series typically assume homoskedasticity and normality and as such cannot explain stylized phenomena such as skewness, heavy tails, and volatility clustering of the empirical asset returns in finance. In 1963, Benoit Mandelbrot first used the stable distribution to model the empirical distributions which have the skewness and heavy-tail property. Since -stable distributions have infinite -th moments for all , the tempered stable processes have been proposed for overcoming this limitation of the stable distribution.
A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.
The Lomax distribution, conditionally also called the Pareto Type II distribution, is a heavy-tail probability distribution used in business, economics, actuarial science, queueing theory and Internet traffic modeling. It is named after K. S. Lomax. It is essentially a Pareto distribution that has been shifted so that its support begins at zero.
Affine gauge theory is classical gauge theory where gauge fields are affine connections on the tangent bundle over a smooth manifold . For instance, these are gauge theory of dislocations in continuous media when , the generalization of metric-affine gravitation theory when is a world manifold and, in particular, gauge theory of the fifth force.
In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of eleven-dimensional supergravity.
Batch normalization is a method used to make training of artificial neural networks faster and more stable through normalization of the layers' inputs by re-centering and re-scaling. It was proposed by Sergey Ioffe and Christian Szegedy in 2015.
1 2 Pham-Gia, T.; Turkkan, N.; Marchand, E. (2006). "Density of the Ratio of Two Normal Random Variables and Applications". Communications in Statistics – Theory and Methods. 35 (9). Taylor & Francis: 1569–1591. doi:10.1080/03610920600683689. S2CID120891296.
↑ Díaz-Francés, Eloísa; Rubio, Francisco J. (2012-01-24). "On the existence of a normal approximation to the distribution of the ratio of two independent normal random variables". Statistical Papers. 54 (2). Springer Science and Business Media LLC: 309–323. doi:10.1007/s00362-012-0429-2. ISSN0932-5026. S2CID122038290.
↑ Of course, any invocation of a central limit theorem assumes suitable, commonly met regularity conditions, e.g., finite variance.
1 2 3 Kermond, John (2010). "An Introduction to the Algebra of Random Variables". Mathematical Association of Victoria 47th Annual Conference Proceedings – New Curriculum. New Opportunities. The Mathematical Association of Victoria: 1–16. ISBN978-1-876949-50-1.
↑ "SLAPPF". Statistical Engineering Division, National Institute of Science and Technology. Retrieved 2009-07-02.
↑ Hamedani, G. G. (Oct 2013). "Characterizations of Distribution of Ratio of Rayleigh Random Variables". Pakistan Journal of Statistics. 29 (4): 369–376.
↑ Katz D. et al.(1978) Obtaining confidence intervals for the risk ratio in cohort studies. Biometrics 34:469–474
↑ Cohen, A Clifford (June 1960). "Estimating the Parameter in a Conditional Poisson Distribution". Biometrics. 60 (2): 203–211. doi:10.2307/2527552. JSTOR2527552.
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.