Renu Malhotra

Last updated

Renu Malhotra
Born1961 (age 6162)
Known forPlanet migration in the Solar system
Scientific career
Doctoral advisor Stanley Dermott
Website https://www.lpl.arizona.edu/~renu/

Renu Malhotra (born 1961) is an American planetary scientist from India, known for using the orbital resonance between Pluto and Neptune to infer large-scale orbital migration of the giant planets and to predict the existence of Plutinos in resonance with Neptune. The asteroid 6698 Malhotra was named for her on 14 December 1997 ( M.P.C. 31025). [1] [2] She is credited by the Minor Planet Center with the co-discovery of (455206) 2001 FE193 , a trans-Neptunian object in the Kuiper belt.

Contents

Early life and career

Minor planets discovered: 1 [3]
(455206) 2001 FE193 27 March 2001 MPC

Renu Malhotra was born in New Delhi in 1961. Her father was an aircraft engineer at Indian Airlines. Her family moved to Hyderabad when she was a child. [4] She attended the Indian Institute of Technology Delhi, graduating with an M.S. degree in Physics in 1983. [5] Malhotra then attended Cornell University, where she was introduced to non-linear dynamics by Mitchell Feigenbaum. [6] She received her Ph.D. degree in Physics from Cornell in 1988, with Stanley Dermott as her doctoral advisor. With the help of Peter Goldreich who had read her paper on the moons of Uranus, she obtained a postdoctoral research position at California Institute of Technology. She then worked for nine years at Lunar and Planetary Institute, where she completed work on Pluto's orbital resonance and predicted the resonant structure of the Kuiper Belt. [6] Malhotra is currently a professor at the University of Arizona's Lunar and Planetary Laboratory. [7]

Awards and honors

See also

Related Research Articles

<span class="mw-page-title-main">Classical Kuiper belt object</span> Kuiper belt object, not controlled by an orbital resonance with Neptune

A classical Kuiper belt object, also called a cubewano ( "QB1-o"), is a low-eccentricity Kuiper belt object (KBO) that orbits beyond Neptune and is not controlled by an orbital resonance with Neptune. Cubewanos have orbits with semi-major axes in the 40–50 AU range and, unlike Pluto, do not cross Neptune's orbit. That is, they have low-eccentricity and sometimes low-inclination orbits like the classical planets.

<span class="mw-page-title-main">Kuiper belt</span> Area of the Solar System beyond the planets, comprising small bodies

The Kuiper belt is a circumstellar disc in the outer Solar System, extending from the orbit of Neptune at 30 astronomical units (AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt, but is far larger—20 times as wide and 20–200 times as massive. Like the asteroid belt, it consists mainly of small bodies or remnants from when the Solar System formed. While many asteroids are composed primarily of rock and metal, most Kuiper belt objects are composed largely of frozen volatiles, such as methane, ammonia, and water. The Kuiper belt is home to most of the objects that astronomers generally accept as dwarf planets: Orcus, Pluto, Haumea, Quaoar, and Makemake. Some of the Solar System's moons, such as Neptune's Triton and Saturn's Phoebe, may have originated in the region.

<span class="mw-page-title-main">Planets beyond Neptune</span> Hypothetical planets further than Neptune

Following the discovery of the planet Neptune in 1846, there was considerable speculation that another planet might exist beyond its orbit. The search began in the mid-19th century and continued at the start of the 20th with Percival Lowell's quest for Planet X. Lowell proposed the Planet X hypothesis to explain apparent discrepancies in the orbits of the giant planets, particularly Uranus and Neptune, speculating that the gravity of a large unseen ninth planet could have perturbed Uranus enough to account for the irregularities.

In astronomy, the plutinos are a dynamical group of trans-Neptunian objects that orbit in 2:3 mean-motion resonance with Neptune. This means that for every two orbits a plutino makes, Neptune orbits three times. The dwarf planet Pluto is the largest member as well as the namesake of this group. The next largest members are Orcus, (208996) 2003 AZ84, and Ixion. Plutinos are named after mythological creatures associated with the underworld.

<span class="mw-page-title-main">Pluto</span> Dwarf planet

Pluto is a dwarf planet in the Kuiper belt, a ring of bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the Sun. It is the largest known trans-Neptunian object by volume, by a small margin, but is slightly less massive than Eris. Like other Kuiper belt objects, Pluto is made primarily of ice and rock and is much smaller than the inner planets. Pluto has only one sixth the mass of Earth's moon, and one third its volume.

<span class="mw-page-title-main">28978 Ixion</span> Plutino

28978 Ixion (, provisional designation 2001 KX76) is a large trans-Neptunian object and a possible dwarf planet. It is located in the Kuiper belt, a region of icy objects orbiting beyond Neptune in the outer Solar System. Ixion is classified as a plutino, a dynamical class of objects in a 2:3 orbital resonance with Neptune. It was discovered in May 2001 by astronomers of the Deep Ecliptic Survey at the Cerro Tololo Inter-American Observatory, and was announced in July 2001. The object is named after the Greek mythological figure Ixion, who was a king of the Lapiths.

<span class="mw-page-title-main">90482 Orcus</span> Trans-Neptunian object and dwarf planet

Orcus is a trans-Neptunian dwarf planet with a large moon, Vanth. It has a diameter of 870 to 960 km, the size of or somewhat smaller than the asteroid Ceres. The surface of Orcus is relatively bright with albedo reaching 23 percent, neutral in color and rich in water ice. The ice is predominantly in crystalline form, which may be related to past cryovolcanic activity. Other compounds like methane or ammonia may also be present on its surface. Orcus was discovered by American astronomers Michael Brown, Chad Trujillo, and David Rabinowitz on 17 February 2004.

<span class="mw-page-title-main">David L. Rabinowitz</span> American astronomer

David Lincoln Rabinowitz is an American astronomer, discoverer of minor planets and researcher at Yale University.

<span class="mw-page-title-main">David C. Jewitt</span> British-American astronomer (born 1958)

David Clifford Jewitt is a British-American astronomer who studies the Solar System, especially its minor bodies. He is based at the University of California, Los Angeles, where he is a Member of the Institute for Geophysics and Planetary Physics, the Director of the Institute for Planets and Exoplanets, Professor of Astronomy in the Department of Physics and Astronomy and Professor of Astronomy in the Department of Earth, Planetary and Space Sciences. He is best known for being the first person to discover a body beyond Pluto and Charon in the Kuiper belt.

<span class="mw-page-title-main">Marc Buie</span> American astronomer

Marc William Buie is an American astronomer and prolific discoverer of minor planets who works at the Southwest Research Institute in Boulder, Colorado in the Space Science Department. Formerly he worked at the Lowell Observatory in Flagstaff, Arizona, and was the Sentinel Space Telescope Mission Scientist for the B612 Foundation, which is dedicated to protecting Earth from asteroid impact events.

<span class="mw-page-title-main">38628 Huya</span> Trans-Neptunian object

38628 Huya ( hoo-YAH), provisional designation 2000 EB173, is a binary trans-Neptunian object located in the Kuiper belt, a region of icy objects orbiting beyond Neptune in the outer Solar System. Huya is classified as a plutino, a dynamical class of trans-Neptunian objects with orbits in a 3:2 orbital resonance with Neptune. It was discovered by the Quasar Equatorial Survey Team and was identified by Venezuelan astronomer Ignacio Ferrín in March 2000. It is named after Juyá, the mythological rain god of the Wayuu people native to South America.

In astronomy, a resonant trans-Neptunian object is a trans-Neptunian object (TNO) in mean-motion orbital resonance with Neptune. The orbital periods of the resonant objects are in a simple integer relations with the period of Neptune, e.g. 1:2, 2:3, etc. Resonant TNOs can be either part of the main Kuiper belt population, or the more distant scattered disc population.

<span class="mw-page-title-main">Scattered disc</span> Collection of bodies in the extreme Solar System

The scattered disc (or scattered disk) is a distant circumstellar disc in the Solar System that is sparsely populated by icy small Solar System bodies, which are a subset of the broader family of trans-Neptunian objects. The scattered-disc objects (SDOs) have orbital eccentricities ranging as high as 0.8, inclinations as high as 40°, and perihelia greater than 30 astronomical units (4.5×109 km; 2.8×109 mi). These extreme orbits are thought to be the result of gravitational "scattering" by the gas giants, and the objects continue to be subject to perturbation by the planet Neptune.

James Ludlow Elliot was an American astronomer and scientist who, as part of a team, discovered the rings around the planet Uranus. Elliot was also part of a team that observed global warming on Triton, the largest moon of Neptune.

1776 Kuiper, provisional designation 2520 P-L, is a dark Eoan asteroid from the outer region of the asteroid belt, approximately 38 kilometers in diameter.

<span class="mw-page-title-main">Detached object</span> Dynamical class of minor planets

Detached objects are a dynamical class of minor planets in the outer reaches of the Solar System and belong to the broader family of trans-Neptunian objects (TNOs). These objects have orbits whose points of closest approach to the Sun (perihelion) are sufficiently distant from the gravitational influence of Neptune that they are only moderately affected by Neptune and the other known planets: This makes them appear to be "detached" from the rest of the Solar System, except for their attraction to the Sun.

<span class="mw-page-title-main">50000 Quaoar</span> Cold classical Kuiper belt object

Quaoar (minor-planet designation 50000 Quaoar, provisional designation 2002 LM60) is a dwarf planet in the Kuiper belt, a region of icy planetesimals beyond Neptune. A non-resonant object (cubewano), it measures approximately 1,086 km (675 mi) in diameter, about the size of Saturn's moon Dione or half the size of Pluto. The object was discovered by American astronomers Chad Trujillo and Michael Brown at the Palomar Observatory on 4 June 2002. Signs of water ice on the surface of Quaoar have been found, which suggests that cryovolcanism may be occurring on Quaoar. A small amount of methane is present on its surface, which can only be retained by the largest Kuiper belt objects.

The five-planet Nice model is a numerical model of the early Solar System that is a revised variation of the Nice model. It begins with five giant planets, the four that exist today plus an additional ice giant between Saturn and Uranus in a chain of mean-motion resonances.

2013 GP136 is a trans-Neptunian object from the scattered disc in the outermost reaches of the Solar System, approximately 212 kilometers in diameter. It was discovered on 8 February 2013, by the Outer Solar System Origins Survey at the Mauna Kea Observatories on the island of Hawaii, United States.

<span class="nowrap">(523794) 2015 RR<sub>245</sub></span>

(523794) 2015 RR245, provisional designation 2015 RR245, is a large trans-Neptunian object of the Kuiper belt in the outermost regions of the Solar System. It was discovered on 9 September 2015, by the Outer Solar System Origins Survey at Mauna Kea Observatories on the Big island of Hawaii, in the United States. The object is in a rare 2:9 resonance with Neptune and measures approximately 600 kilometers in diameter. 2015 RR245 was suspected to have a satellite according to a study announced by Noyelles et al. in a European Planetary Science Congress meeting in 2019.

References

  1. Schmadel, Lutz D. (2007). "(6698) Malhotra". Dictionary of Minor Planet Names. Springer Berlin Heidelberg. p. 550. doi:10.1007/978-3-540-29925-7_6043. ISBN   978-3-540-00238-3.
  2. "MPC/MPO/MPS Archive". Minor Planet Center. Retrieved 24 August 2016.
  3. "Minor Planet Discoverers (by number)". Minor Planet Center. 20 August 2016. Retrieved 24 August 2016.
  4. John Davies (2001). Beyond Pluto: Exploring the Outer Limits of the Solar System. Cambridge University Press. p. 109. ISBN   978-1139428774.
  5. Prof. Renu Malhotra - AAIP - IITD Alumni - IIT Delhi - website of the Indian Institute of Technology Delhi
  6. 1 2 3 Govert Schilling (2009). New Worlds and the Fate of Pluto. Springer Publishing. pp. 166–72. ISBN   978-0387778051.
  7. David Levy, ed. (22 November 2000). The Scientific American Book of the Cosmos . Macmillan. p.  398. ISBN   978-0312254537.
  8. "Take charge, Premji tells students". The Hindu . 13 August 2006. Archived from the original on 19 August 2006.