Reproductive technology encompasses all current and anticipated uses of technology in human and animal reproduction, including assisted reproductive technology (ART), [1] contraception and others. It is also termed Assisted Reproductive Technology, where it entails an array of appliances and procedures that enable the realization of safe, improved and healthier reproduction. While this is not true of all people, for an array of married couples, the ability to have children is vital. But through the technology, infertile couples have been provided with options that would allow them to conceive children. [2]
Assisted reproductive technology (ART) is the use of reproductive technology to treat low fertility or infertility. Modern technology can provide infertile couples with assisted reproductive technologies. The natural method of reproduction has become only one of many new techniques used today. There are millions of couples that do not have the ability to reproduce on their own because of infertility and therefore, must resort to these new techniques. The main causes of infertility are that of hormonal malfunctions and anatomical abnormalities. [3] ART is currently the only form of assistance for individuals who, for the time being, can only conceive through surrogacy methods). [4] Examples of ART include in vitro fertilization (IVF) and its possible expansions, including:
In 1981, after the birth of Elizabeth Carr, the first baby in the United States to be conceived through in vitro fertilization (IVF). Her birth gave hope to many couples struggling with infertility. Dr. Howard Jones brought together the leading practitioners of the five US-based IVF programs (Norfolk,[ clarification needed ] Vanderbilt, University of Texas at Houston, and the University of Southern California, Yale) to discuss the establishment of a national registry for in vitro fertilization attempts and outcomes. 2 years later, in 1985 the society for assisted reproductive technology (SART) was founded as a special interest entity within the American Fertility Society. [5] SART has not only informed the evolution of infertility care but also improved success of antiretroviral therapy. [6]
Reproductive technology can inform family planning by providing individual prognoses regarding the likelihood of pregnancy. It facilitates the monitoring of ovarian reserve, follicular dynamics and associated biomarkers in females, [7] as well as semen analysis in males. [8]
Contraception, also known as birth control, is a form of reproductive technology that enables people to prevent pregnancy. [9] There are many forms of contraception, but the term covers any method or device which is intended to prevent pregnancy in a sexually active woman. Methods are intended to "prevent the fertilization of an egg or implantation of a fertilized egg in the uterus." [10] Different forms of birth control have been around since ancient times, but widely available effective and safe methods only became available during the mid-1900s. [11]
The following reproductive techniques are not currently in routine clinical use; most are still undergoing development:
Research is currently investigating the possibility of same-sex procreation, which would produce offspring with equal genetic contributions from either two females or two males. [12] This form of reproduction has become a possibility through the creation of either female sperm (containing the genetic material of a female) or male eggs (containing the genetic material of a male). Same-sex procreation would remove the need for lesbian and gay couples to rely on a third party donation of a sperm or an egg for reproduction. [13] The first significant development occurred in 1991, in a patent application filed by U.Penn. scientists to fix male sperm by extracting some sperm, correcting a genetic defect in vitro, and injecting the sperm back into the male's testicles. [14] While the vast majority of the patent application dealt with male sperm, one line suggested that the procedure would work with XX cells, i.e., cells from an adult woman to make female sperm.
In the two decades that followed, the idea of female sperm became more of a reality. In 1997, scientists partially confirmed such techniques by creating chicken female sperm in a similar manner. [15] They did so by injecting blood stem cells from an adult female chicken into a male chicken's testicles. In 2004, other Japanese scientists created two female offspring by combining the eggs of two adult mice. [16] [17]
In 2008, research was done specifically for methods on creating human female sperm using artificial or natural Y chromosomes and testicular transplantation. [18] A UK-based group predicted they would be able to create human female sperm within five years. So far no conclusive successes have been achieved. [3]
In 2018 Chinese research scientists produced 29 viable mice offspring from two mother mice by creating sperm-like structures from haploid Embryonic stem cells using gene editing to alter imprinted regions of DNA. They were unable to get viable offspring from two fathers. Experts noted that there was little chance of these techniques being applied to humans in the near future. [19] [20]
Recent technological advances in fertility treatments introduce ethical problems, such as the affordability of the various procedures. The exorbitant prices can limit who has access. [12] The cost of performing ART per live birth varies among countries. [21] The average cost per IVF cycle in the United States is USD 9,266. [22] However, the cost per live birth for autologous ART treatment cycles in the United States, Canada, and the United Kingdom ranged from approximately USD 33,000 to 41,000 compared to USD 24,000 to 25,000 in Scandinavia, Japan, and Australia [23]
The funding structure for IVF/ART is highly variable among different nations. For example, no federal government reimbursement exists for IVF in the United States, although certain states have insurance mandates for ART [24]
Many issues of reproductive technology have given rise to bioethical issues, since technology often alters the assumptions that lie behind existing systems of sexual and reproductive morality. Other ethical considerations arise with the application of ART to women of advanced maternal age, who have higher changes of medical complications (including pre-eclampsia), and possibly in the future its application to post-menopausal women. [25] [26] [27] Also, ethical issues of human enhancement arise when reproductive technology has evolved to be a potential technology for not only reproductively inhibited people but even for otherwise re-productively healthy people. [28]
Cryopreservation of Oocytes
Cryopreservation techniques have significantly evolved in recent decades, enabling the long-term storage of human oocytes and embryos for fertility preservation. The introduction of vitrification, a rapid-freezing method that prevents the formation of ice crystals, has markedly improved post-thaw survival rates and oocyte viability. This method employs high concentrations of cryoprotectants to ensure cellular integrity while maintaining spindle structure and chromosomal alignment.
Ovarian Reserve Assessment
Accurate assessment of ovarian reserve has become a cornerstone of individualized reproductive treatment plans. Anti-Müllerian hormone (AMH) and antral follicle count (AFC) are the primary markers used to evaluate the remaining oocyte pool. AMH, secreted by granulosa cells of preantral and small antral follicles, offers a cycle-independent, minimally invasive method for predicting ovarian response in assisted reproductive technology (ART).
Ethical Considerations
The use of reproductive technologies, particularly for non-medical fertility preservation, has raised ethical questions. Critics argue that societal pressures may drive unnecessary interventions, while proponents highlight the empowerment of individuals in making reproductive choices. Balancing accessibility and ethical integrity remains a key challenge for the field.
In vitro fertilisation (IVF) is a process of fertilisation in which an egg is combined with sperm in vitro. The process involves monitoring and stimulating a woman's ovulatory process, then removing an ovum or ova from her ovaries and enabling a man's sperm to fertilise them in a culture medium in a laboratory. After a fertilised egg (zygote) undergoes embryo culture for 2–6 days, it is transferred by catheter into the uterus, with the intention of establishing a successful pregnancy.
Intracytoplasmic sperm injection is an in vitro fertilization (IVF) procedure in which a single sperm cell is injected directly into the cytoplasm of an egg. This technique is used in order to prepare the gametes for the obtention of embryos that may be transferred to a maternal uterus. With this method, the acrosome reaction is skipped.
Infertility is the inability of a couple to reproduce by natural means. It is usually not the natural state of a healthy adult. Exceptions include children who have not undergone puberty, which is the body's start of reproductive capacity. It is also a normal state in women after menopause.
Assisted reproductive technology (ART) includes medical procedures used primarily to address infertility. This subject involves procedures such as in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), cryopreservation of gametes or embryos, and/or the use of fertility medication. When used to address infertility, ART may also be referred to as fertility treatment. ART mainly belongs to the field of reproductive endocrinology and infertility. Some forms of ART may be used with regard to fertile couples for genetic purpose. ART may also be used in surrogacy arrangements, although not all surrogacy arrangements involve ART. The existence of sterility will not always require ART to be the first option to consider, as there are occasions when its cause is a mild disorder that can be solved with more conventional treatments or with behaviors based on promoting health and reproductive habits.
Embryo transfer refers to a step in the process of assisted reproduction in which embryos are placed into the uterus of a female with the intent to establish a pregnancy. This technique - which is often used in connection with in vitro fertilization (IVF) - may be used in humans or in other animals, in which situations and goals may vary.
Fertility medications, also known as fertility drugs, are medications which enhance reproductive fertility. For women, fertility medication is used to stimulate follicle development of the ovary. There are very few fertility medication options available for men.
Oocyte cryopreservation is a procedure to preserve a woman's eggs (oocytes). The technique is often used to delay pregnancy. At the time pregnancy is desired, the eggs can be thawed, fertilized, and transferred to the uterus as embryos. Many studies have suggested infertility problems as germ cell deterioration related to aging. The procedure's success rate varies according to the woman's age, health, and genetic factors. The first human birth of oocyte cryopreservation was reported in 1986.
In vitro maturation (IVM) is the technique of letting the contents of ovarian follicles and the oocytes inside mature in vitro. It can be offered to women with infertility problems, combined with In Vitro Fertilization (IVF), offering women pregnancy without ovarian stimulation.
Poor ovarian reserve is a condition of low fertility characterized by 1): low numbers of remaining oocytes in the ovaries or 2) possibly impaired preantral oocyte development or recruitment. Recent research suggests that premature ovarian aging and premature ovarian failure may represent a continuum of premature ovarian senescence. It is usually accompanied by high FSH levels.
Transvaginal oocyte retrieval (TVOR), also referred to as oocyte retrieval (OCR), is a technique used in in vitro fertilization (IVF) in order to remove oocytes from an ovary, enabling fertilization outside the body. Transvaginal oocyte retrieval is more properly referred to as transvaginal ovum retrieval when the oocytes have matured into ova, as is normally the case in IVF. It can be also performed for egg donation, oocyte cryopreservation and other assisted reproduction technology such as ICSI.
Fertility preservation is the effort to help cancer patients retain their fertility, or ability to procreate. Research into how cancer, ageing and other health conditions effect reproductive health and preservation options are growing. Specifically sparked in part by the increase in the survival rate of cancer patients.
Pregnancy rate is the success rate for getting pregnant. It is the percentage of all attempts that leads to pregnancy, with attempts generally referring to menstrual cycles where insemination or any artificial equivalent is used, which may be simple artificial insemination (AI) or AI with additional in vitro fertilization (IVF).
Reproductive surgery is surgery in the field of reproductive medicine. It can be used for contraception, e.g. in vasectomy, wherein the vasa deferentia of a male are severed, but is also used plentifully in assisted reproductive technology. Reproductive surgery is generally divided into three categories: surgery for infertility, in vitro fertilization, and fertility preservation.
Oocyte selection is a procedure that is performed prior to in vitro fertilization, in order to use oocytes with maximal chances of resulting in pregnancy. In contrast, embryo selection takes place after fertilization.
Unexplained infertility is infertility that is idiopathic in the sense that its cause remains unknown even after an infertility work-up, usually including semen analysis in the man and assessment of ovulation and fallopian tubes in the woman. It is usually an exercise in excluding all possible causes before making a diagnosis, however the age of the female partner as well as the duration of infertility are often the most scrutinized characteristics of any infertility case.
Female fertility is affected by age and is a major fertility factor for women. A woman's fertility is in generally good quality from the late teens to early thirties, although it declines gradually over time. Around 35, fertility is noted to decline at a more rapid rate. At age 45, a woman starting to try to conceive will have no live birth in 50–80 percent of cases. Menopause, or the cessation of menstrual periods, generally occurs in the 40s and 50s and marks the cessation of fertility, although age-related infertility can occur before then. The relationship between age and female fertility is sometimes referred to as a woman's "biological clock."
The history of in vitro fertilisation (IVF) goes back more than half a century. In 1959 the first birth in a nonhuman mammal resulting from IVF occurred, and in 1978 the world's first baby conceived by IVF was born. As medicine advanced, IVF was transformed from natural research to a stimulated clinical treatment. There have been many refinements in the IVF process, and today millions of births have occurred with the help of IVF all over the world.
Ovarian follicle dominance is the process where one or more follicles are selected per cycle to ovulate.
Dmitri Dozortsev is a Russian-American physician scientist, inventor and researcher. Dozortsev's contributions in research and publications are mostly in the areas of human reproductive medicine and biology. In particular, he is best known for his studies of in vitro fertilisation and embryo transfer. Dozortsev currently serves as President of the American College of Embryology and as Director of Omni-Med laboratories.
Lesbian, gay, bisexual, and transgender people people wishing to have children may use assisted reproductive technology. In recent decades, developmental biologists have been researching and developing techniques to facilitate same-sex reproduction.