Reproductive technology

Last updated

Reproductive technology encompasses all current and anticipated uses of technology in human and animal reproduction, including assisted reproductive technology (ART), [1] contraception and others. It is also termed Assisted Reproductive Technology, where it entails an array of appliances and procedures that enable the realization of safe, improved and healthier reproduction. While this is not true of all people, for an array of married couples, the ability to have children is vital. But through the technology, infertile couples have been provided with options that would allow them to conceive children. [2]

Contents

Overview

Assisted reproductive technology

Assisted reproductive technology (ART) is the use of reproductive technology to treat low fertility or infertility. Modern technology can provide infertile couples with assisted reproductive technologies. The natural method of reproduction has become only one of many new techniques used today. There are millions of couples that do not have the ability to reproduce on their own because of infertility and therefore, must resort to these new techniques. The main causes of infertility are that of hormonal malfunctions and anatomical abnormalities. [3]  ART is currently the only form of assistance for individuals who, for the time being, can only conceive through surrogacy methods). [4] Examples of ART include in vitro fertilization (IVF) and its possible expansions, including:

Role of the Society for Assisted Reproductive Technology (SART)

In 1981, after the birth of Elizabeth Carr, the first baby in the United States to be conceived through in vitro fertilization (IVF). Her birth gave hope to many couples struggling with infertility. Dr. Howard Jones brought together the leading practitioners of the five US-based IVF programs (Norfolk,[ clarification needed ] Vanderbilt, University of Texas at Houston, and the University of Southern California, Yale) to discuss the establishment of a national registry for in vitro fertilization attempts and outcomes. 2 years later, in 1985 the society for assisted reproductive technology (SART) was founded as a special interest entity within the American Fertility Society. [5] SART has not only informed the evolution of infertility care but also improved success of antiretroviral therapy. [6]

Prognostics

Reproductive technology can inform family planning by providing individual prognoses regarding the likelihood of pregnancy. It facilitates the monitoring of ovarian reserve, follicular dynamics and associated biomarkers in females, [7] as well as semen analysis in males. [8]

Contraception

Contraception, also known as birth control, is a form of reproductive technology that enables people to prevent pregnancy. [9] There are many forms of contraception, but the term covers any method or device which is intended to prevent pregnancy in a sexually active woman. Methods are intended to "prevent the fertilization of an egg or implantation of a fertilized egg in the uterus." [10] Different forms of birth control have been around since ancient times, but widely available effective and safe methods only became available during the mid-1900s. [11]

Others

The following reproductive techniques are not currently in routine clinical use; most are still undergoing development:

Same-sex procreation

Research is currently investigating the possibility of same-sex procreation, which would produce offspring with equal genetic contributions from either two females or two males. [12] This form of reproduction has become a possibility through the creation of either female sperm (containing the genetic material of a female) or male eggs (containing the genetic material of a male). Same-sex procreation would remove the need for lesbian and gay couples to rely on a third party donation of a sperm or an egg for reproduction. [13] The first significant development occurred in 1991, in a patent application filed by U.Penn. scientists to fix male sperm by extracting some sperm, correcting a genetic defect in vitro, and injecting the sperm back into the male's testicles. [14] While the vast majority of the patent application dealt with male sperm, one line suggested that the procedure would work with XX cells, i.e., cells from an adult woman to make female sperm.

In the two decades that followed, the idea of female sperm became more of a reality. In 1997, scientists partially confirmed such techniques by creating chicken female sperm in a similar manner. [15] They did so by injecting blood stem cells from an adult female chicken into a male chicken's testicles. In 2004, other Japanese scientists created two female offspring by combining the eggs of two adult mice. [16] [17]

In 2008, research was done specifically for methods on creating human female sperm using artificial or natural Y chromosomes and testicular transplantation. [18] A UK-based group predicted they would be able to create human female sperm within five years. So far no conclusive successes have been achieved. [3]

In 2018 Chinese research scientists produced 29 viable mice offspring from two mother mice by creating sperm-like structures from haploid Embryonic stem cells using gene editing to alter imprinted regions of DNA. They were unable to get viable offspring from two fathers. Experts noted that there was little chance of these techniques being applied to humans in the near future. [19] [20]

Ethics

Recent technological advances in fertility treatments introduce ethical problems, such as the affordability of the various procedures. The exorbitant prices can limit who has access. [12] The cost of performing ART per live birth varies among countries. [21] The average cost per IVF cycle in the United States is USD 9,266. [22] However, the cost per live birth for autologous ART treatment cycles in the United States, Canada, and the United Kingdom ranged from approximately USD 33,000 to 41,000 compared to USD 24,000 to 25,000 in Scandinavia, Japan, and Australia [23]

The funding structure for IVF/ART is highly variable among different nations. For example, no federal government reimbursement exists for IVF in the United States, although certain states have insurance mandates for ART [24]

Many issues of reproductive technology have given rise to bioethical issues, since technology often alters the assumptions that lie behind existing systems of sexual and reproductive morality. Other ethical considerations arise with the application of ART to women of advanced maternal age, who have higher changes of medical complications (including pre-eclampsia), and possibly in the future its application to post-menopausal women. [25] [26] [27] Also, ethical issues of human enhancement arise when reproductive technology has evolved to be a potential technology for not only reproductively inhibited people but even for otherwise re-productively healthy people. [28]

In fiction

Related Research Articles

<span class="mw-page-title-main">In vitro fertilisation</span> Assisted reproductive technology procedure

In vitro fertilisation (IVF) is a process of fertilisation where an egg is combined with sperm in vitro. The process involves monitoring and stimulating a woman's ovulatory process, removing an ovum or ova from their ovaries and letting a man's sperm fertilise them in a culture medium in a laboratory. After the fertilised egg (zygote) undergoes embryo culture for 2–6 days, it is transferred by catheter into the uterus, with the intention of establishing a successful pregnancy.

<span class="mw-page-title-main">Intracytoplasmic sperm injection</span> In vitro fertilization procedure

Intracytoplasmic sperm injection is an in vitro fertilization (IVF) procedure in which a single sperm cell is injected directly into the cytoplasm of an egg. This technique is used in order to prepare the gametes for the obtention of embryos that may be transferred to a maternal uterus. With this method, the acrosome reaction is skipped.

<span class="mw-page-title-main">Infertility</span> Inability to reproduce by natural means

Infertility is the inability of an animal or plant to reproduce by natural means. It is usually not the natural state of a healthy adult, except notably among certain eusocial species. It is the normal state of a human child or other young offspring, because they have not undergone puberty, which is the body's start of reproductive capacity.

<span class="mw-page-title-main">Assisted reproductive technology</span> Methods to achieve pregnancy by artificial or partially artificial means

Assisted reproductive technology (ART) includes medical procedures used primarily to address infertility. This subject involves procedures such as in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), cryopreservation of gametes or embryos, and/or the use of fertility medication. When used to address infertility, ART may also be referred to as fertility treatment. ART mainly belongs to the field of reproductive endocrinology and infertility. Some forms of ART may be used with regard to fertile couples for genetic purpose. ART may also be used in surrogacy arrangements, although not all surrogacy arrangements involve ART. The existence of sterility will not always require ART to be the first option to consider, as there are occasions when its cause is a mild disorder that can be solved with more conventional treatments or with behaviors based on promoting health and reproductive habits.

<span class="mw-page-title-main">Embryo transfer</span> Method of assisted reproduction

Embryo transfer refers to a step in the process of assisted reproduction in which embryos are placed into the uterus of a female with the intent to establish a pregnancy. This technique - which is often used in connection with in vitro fertilization (IVF) - may be used in humans or in other animals, in which situations and goals may vary.

Fertility medications, also known as fertility drugs, are medications which enhance reproductive fertility. For women, fertility medication is used to stimulate follicle development of the ovary. There are very few fertility medication options available for men.

Male infertility refers to a sexually mature male's inability to impregnate a fertile female. In humans, it accounts for 40–50% of infertility. It affects approximately 7% of all men. Male infertility is commonly due to deficiencies in the semen, and semen quality is used as a surrogate measure of male fecundity. More recently, advance sperm analyses that examine intracellular sperm components are being developed.

<span class="mw-page-title-main">Oocyte cryopreservation</span> Procedure to preserve a womans eggs (oocytes)

Oocyte cryopreservation is a procedure to preserve a woman's eggs (oocytes). This technique has been used to postpone pregnancy. When pregnancy is desired, the eggs can be thawed, fertilized, and transferred to the uterus as embryos. Several studies have shown that most infertility problems are due to germ cell deterioration related to aging. The procedure's success rate varies depending on the age of the woman,, as well as depending on health and genetic indicators. In 1986, the first human birth of oocyte oocyte cryopreservation was reported.

<span class="mw-page-title-main">In vitro maturation</span> Artificial maturation of harvested immature egg cells

In vitro maturation (IVM) is the technique of letting the contents of ovarian follicles and the oocytes inside mature in vitro. It can be offered to women with infertility problems, combined with In Vitro Fertilization (IVF), offering women pregnancy without ovarian stimulation.

Fertility preservation is the effort to help cancer patients retain their fertility, or ability to procreate. Research into how cancer, ageing and other health conditions effect reproductive health and preservation options are growing. Specifically sparked in part by the increase in the survival rate of cancer patients.

Sperm sorting is a means of choosing what type of sperm cell is to fertilize the egg cell. Several conventional techniques of centrifugation or swim-up. Newly applied methods such as flow cytometry expand the possibilities of sperm sorting and new techniques of sperm sorting are being developed.

Pregnancy rate is the success rate for getting pregnant. It is the percentage of all attempts that leads to pregnancy, with attempts generally referring to menstrual cycles where insemination or any artificial equivalent is used, which may be simple artificial insemination (AI) or AI with additional in vitro fertilization (IVF).

Reproductive surgery is surgery in the field of reproductive medicine. It can be used for contraception, e.g. in vasectomy, wherein the vasa deferentia of a male are severed, but is also used plentifully in assisted reproductive technology. Reproductive surgery is generally divided into three categories: surgery for infertility, in vitro fertilization, and fertility preservation.

Unexplained infertility is infertility that is idiopathic in the sense that its cause remains unknown even after an infertility work-up, usually including semen analysis in the man and assessment of ovulation and fallopian tubes in the woman. It is usually an exercise in excluding all possible causes before making a diagnosis, however the age of the female partner as well as the duration of infertility are often the most scrutinized characteristics of any infertility case.

Jacques Cohen is a Dutch embryologist based in New York, U.S. He is currently a Director at Reprogenetics LLC, Laboratory Director at ART Institute of Washington at Walter Reed National Military Medical Center, and Scientific Director of R & D at IVF-online.

<span class="mw-page-title-main">Ashok Agarwal</span> Medical Scientist

Ashok Agarwal is the Director of the Andrology Center, and also the Director of Research at the American Center for Reproductive Medicine at Cleveland Clinic, Cleveland, USA. He is Professor at the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, USA. Ashok is a Senior Staff in the Cleveland Clinic's Glickman Urological and Kidney Institute. He has published extensive translational research in human infertility and assisted reproduction.

The history of in vitro fertilisation (IVF) goes back more than half a century. In 1959 the first birth in a nonhuman mammal resulting from IVF occurred, and in 1978 the world's first baby conceived by IVF was born. As medicine advanced, IVF was transformed from natural research to a stimulated clinical treatment. There have been many refinements in the IVF process, and today millions of births have occurred with the help of IVF all over the world.

Obesity is defined as an abnormal accumulation of body fat, usually 20% or more over an individual's ideal body weight. This is often described as a body mass index (BMI) over 30. However, BMI does not account for whether the excess weight is fat or muscle, and is not a measure of body composition. For most people, however, BMI is an indication used worldwide to estimate nutritional status. Obesity is usually the result of consuming more calories than the body needs and not expending that energy by doing exercise. There are genetic causes and hormonal disorders that cause people to gain significant amounts of weight but this is rare. People in the obese category are much more likely to suffer from fertility problems than people of normal healthy weight.

Dmitri Dozortsev is a Russian-American physician scientist, inventor and researcher. Dozortsev's contributions in research and publications are mostly in the areas of human reproductive medicine and biology. In particular, he is best known for his studies of in vitro fertilisation and embryo transfer. Dozortsev currently serves as President of the American College of Embryology and as Director of Omni-Med laboratories.

<span class="mw-page-title-main">Use of assisted reproductive technology by LGBT people</span>

Lesbian, gay, bisexual, and transgender people people wishing to have children may use assisted reproductive technology. In recent decades, developmental biologists have been researching and developing techniques to facilitate same-sex reproduction.

References

  1. Kushnir, Vitaly A.; Choi, Jennifer; Darmon, Sarah K.; Albertini, David F.; Barad, David H.; Gleicher, Norbert (August 2017). "CDC-reported assisted reproductive technology live-birth rates may mislead the public". Reproductive BioMedicine Online. 35 (2): 161–164. doi:10.1016/j.rbmo.2017.05.008. ISSN   1472-6483.
  2. Al-Inany HG, Youssef MA, Ayeleke RO, Brown J, Lam WS, Broekmans FJ (April 2016). "Gonadotrophin-releasing hormone antagonists for assisted reproductive technology" (PDF). The Cochrane Database of Systematic Reviews. 4 (8): CD001750. doi:10.1002/14651858.CD001750.pub4. PMC   8626739 . PMID   27126581.
  3. 1 2 MacRae F (February 2008). "Scientists turn bone marrow into sperm". Australia: The Courier and Mail.
  4. Campo H, Cervelló I, Simón C (July 2017). "Bioengineering the Uterus: An Overview of Recent Advances and Future Perspectives in Reproductive Medicine". Annals of Biomedical Engineering. 45 (7): 1710–1717. doi:10.1007/s10439-016-1783-3. PMID   28028711. S2CID   4130310.
  5. "Gosden, Prof. Roger Gordon, (born 23 Sept. 1948), Professor, and Director of Research in Reproductive Biology, Weill Medical College, Cornell University, 2004–10; Owner and Director, Jamestowne Bookworks, LLC, Williamsburg, Virginia", Who's Who, Oxford University Press, 1 December 2007, retrieved 20 October 2023
  6. Toner, James P.; Coddington, Charles C.; Doody, Kevin; Van Voorhis, Brad; Seifer, David B.; Ball, G. David; Luke, Barbara; Wantman, Ethan (September 2016). "Society for Assisted Reproductive Technology and assisted reproductive technology in the United States: a 2016 update". Fertility and Sterility. 106 (3): 541–546. doi: 10.1016/j.fertnstert.2016.05.026 .
  7. Nelson SM, Telfer EE, Anderson RA (2012). "The ageing ovary and uterus: new biological insights". Human Reproduction Update. 19 (1): 67–83. doi:10.1093/humupd/dms043. PMC   3508627 . PMID   23103636.
  8. Narvaez JL, Chang J, Boulet SL, Davies MJ, Kissin DM (August 2019). "Trends and correlates of the sex distribution among U.S. assisted reproductive technology births". Fertility and Sterility. 112 (2): 305–314. doi: 10.1016/j.fertnstert.2019.03.034 . PMID   31088685.
  9. Sunderam S, Kissin DM, Crawford SB, Folger SG, Boulet SL, Warner L, Barfield WD (February 2018). "Assisted Reproductive Technology Surveillance - United States, 2015". MMWR. Surveillance Summaries. 67 (3): 1–28. doi:10.15585/mmwr.ss6703a1. PMC   5829941 . PMID   29447147.
  10. "Definition of Birth control". MedicineNet. Archived from the original on August 6, 2012. Retrieved August 9, 2012.
  11. Hanson SJ, Burke AE (2010). "Fertility control: contraception, sterilization, and abortion". In Hurt KJ, Guile MW, Bienstock JL, Fox HE, Wallach EE (eds.). The Johns Hopkins manual of gynecology and obstetrics (4th ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. pp. 382–395. ISBN   978-1-60547-433-5.
  12. 1 2 Kissin DM, Adamson GD, Chambers G, DeGeyter C (4 July 2019). Assisted Reproductive Technology Surveillance. Cambridge University Press. ISBN   978-1-108-49858-6.
  13. Gerkowicz SA, Crawford SB, Hipp HS, Boulet SL, Kissin DM, Kawwass JF (April 2018). "Assisted reproductive technology with donor sperm: national trends and perinatal outcomes". American Journal of Obstetrics and Gynecology. 218 (4): 421.e1–421.e10. doi:10.1016/j.ajog.2017.12.224. PMC   11056969 . PMID   29291411. S2CID   27903207.
  14. US 5858354 Repopulation of testicular Seminiferous tubules with foreign cells, corresponding resultant germ cells, and corresponding resultant animals and progeny
  15. Tagami T, Matsubara Y, Hanada H, Naito M (June 1997). "Differentiation of female chicken primordial germ cells into spermatozoa in male gonads". Development, Growth & Differentiation. 39 (3): 267–71. doi: 10.1046/j.1440-169X.1997.t01-2-00002.x . PMID   9227893. S2CID   35900043.
  16. Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, et al. (April 2004). "Birth of parthenogenetic mice that can develop to adulthood". Nature. 428 (6985): 860–4. Bibcode:2004Natur.428..860K. doi:10.1038/nature02402. PMID   15103378. S2CID   4353479.
  17. Silva SG, Bertoldi AD, Silveira MF, Domingues MR, Evenson KR, Santos IS (January 2019). "Assisted reproductive technology: prevalence and associated factors in Southern Brazil". Revista de Saúde Pública. 53: 13. doi:10.11606/s1518-8787.2019053000737. PMC   6390642 . PMID   30726494.
  18. "Color illustration of female sperm making process" (PDF). Human Samesex Reproduction Project.[ permanent dead link ]
  19. McRae M (11 October 2018). "Chinese Researchers Have Spawned Healthy Mice With 2 Biological Mothers And No Father". Science Alert. Retrieved 12 October 2018.
  20. Li ZK, Wang LY, Wang LB, Feng GH, Yuan XW, Liu C, et al. (November 2018). "Generation of Bimaternal and Bipaternal Mice from Hypomethylated Haploid ESCs with Imprinting Region Deletions". Cell Stem Cell. 23 (5): 665–676.e4. doi: 10.1016/j.stem.2018.09.004 . PMID   30318303.
  21. Chambers, Georgina M.; Sullivan, Elizabeth A.; Ishihara, Osamu; Chapman, Michael G.; Adamson, G. David (June 2009). "The economic impact of assisted reproductive technology: a review of selected developed countries". Fertility and Sterility. 91 (6): 2281–2294. doi: 10.1016/j.fertnstert.2009.04.029 . ISSN   0015-0282.
  22. Peipert, Benjamin J.; Montoya, Melissa N.; Bedrick, Bronwyn S.; Seifer, David B.; Jain, Tarun (4 August 2022). "Impact of in vitro fertilization state mandates for third party insurance coverage in the United States: a review and critical assessment". Reproductive Biology and Endocrinology. 20 (1). doi: 10.1186/s12958-022-00984-5 . ISSN   1477-7827. PMC   9351254 .
  23. Reindollar, Richard H.; Regan, Meredith M.; Neumann, Peter J.; Levine, Bat-Sheva; Thornton, Kim L.; Alper, Michael M.; Goldman, Marlene B. (August 2010). "A randomized clinical trial to evaluate optimal treatment for unexplained infertility: the fast track and standard treatment (FASTT) trial". Fertility and Sterility. 94 (3): 888–899. doi: 10.1016/j.fertnstert.2009.04.022 . ISSN   0015-0282.
  24. Mladovsky, Philipa; Sorenson, Corinna (3 April 2009). "Public Financing of IVF: A Review of Policy Rationales". Health Care Analysis. 18 (2): 113–128. doi:10.1007/s10728-009-0114-3. ISSN   1065-3058.
  25. Harrison BJ, Hilton TN, Rivière RN, Ferraro ZM, Deonandan R, Walker MC (16 August 2017). "Advanced maternal age: ethical and medical considerations for assisted reproductive technology". International Journal of Women's Health. 9: 561–570. doi: 10.2147/IJWH.S139578 . PMC   5566409 . PMID   28860865.
  26. Lung FW, Chiang TL, Lin SJ, Lee MC, Shu BC (April 2018). "Assisted reproductive technology has no association with autism spectrum disorders: The Taiwan Birth Cohort Study". Autism. 22 (3): 377–384. doi:10.1177/1362361317690492. PMID   29153004. S2CID   4921280.
  27. Adashi EY, Rock JA, Rosenwaks Z (1996). Reproductive endocrinology, surgery, and technology. Philadelphia: Lippincott-Raven. pp. 1394–1410.
  28. Sunderam S, Kissin DM, Zhang Y, Folger SG, Boulet SL, Warner L, et al. (April 2019). "Assisted Reproductive Technology Surveillance - United States, 2016". MMWR. Surveillance Summaries. 68 (4): 1–23. doi:10.15585/mmwr.ss6804a1. PMC   6493873 . PMID   31022165.
  29. Mastony C (21 June 2009). "Heartache of infertility shared on stage, screen". Chicago Tribune.