Part of a series on |
Economic systems |
---|
Major types |
A Robinson Crusoe economy is a simple framework used to study some fundamental issues in economics. [1] It assumes an economy with one consumer, one producer and two goods. The title "Robinson Crusoe" is a reference to the 1719 novel of the same name authored by Daniel Defoe.
As a thought experiment in economics, many international trade economists have found this simplified and idealized version of the story important due to its ability to simplify the complexities of the real world. The implicit assumption is that the study of a one agent economy will provide useful insights into the functioning of a real world economy with many economic agents. This article pertains to the study of consumer behaviour, producer behaviour and equilibrium as a part of microeconomics. In other fields of economics, the Robinson Crusoe economy framework is used for essentially the same thing. For example, in public finance the Robinson Crusoe economy is used to study the various types of public goods and certain aspects of collective benefits. [2] It is used in growth economics to develop growth models for underdeveloped or developing countries to embark upon a steady growth path using techniques of savings and investment. [3]
Robinson Crusoe is assumed to be shipwrecked on a deserted island.
The basic assumptions are as follows: [4]
There is only one individual – Robinson Crusoe himself. He acts both as a producer to maximise profits, as well as consumer to maximise his utility. [5] The possibility of trade can be introduced by adding another person to the economy. This person is Crusoe's friend, Man Friday. Although in the novel he plays the role of Crusoe's servant, in the Robinson Crusoe economy he is considered as another actor with equal decision-making abilities as Crusoe. Along with this, conditions of Pareto efficiency can be analysed by bringing in the concept of the Edgeworth box. [1]
Similar to the choices that households (suppliers of labour) face, Crusoe has only two activities to participate in – earn income or pass his time in leisure. [1]
The income generating activity in this case is gathering coconuts. [1] As usual, the more time he spends in leisure, the less food he has to eat, and conversely, the more time he spends gathering coconuts, the less time he has for leisure. This is depicted in figure 1.
Crusoe's indifference curves depict his preferences for leisure and coconuts while the production function depicts the technological relationship between how much he works and how many coconuts he gathers. If the axes depicting coconut collection and leisure are reversed and plotted with Crusoe's indifference map and production function, [1] figure 2 can be drawn:
The production function is concave in two dimensions and quasi-convex in three dimensions. This means that the longer Robinson works, the more coconuts he will be able to gather. But due to diminishing marginal returns of labour, the additional number of coconuts he gets from every additional hour of labour is declining. [1]
The point at which Crusoe will reach an equilibrium between the number of hours he works and relaxes can be found out when the highest indifference curve is tangent to the production function. [1] This will be Crusoe's most preferred point provided the technology constraint is given and cannot be changed. At this equilibrium point, the slope of the highest indifference curve must equal the slope of the production function.
Recall that the marginal rate of substitution is the rate at which a consumer is ready to give up one good in exchange for another good while maintaining the same level of utility. [6] Additionally, an input's marginal product is the extra output that can be produced by using one more unit of the input, assuming that the quantities of no other inputs to production change. [6] Then,
where
Suppose Crusoe decides to stop being a producer and consumer simultaneously. He decides he will produce one day and consume the next. His two roles of consumer and producer are being split up and studied separately to understand the elementary form of consumer theory and producer theory in microeconomics. For dividing his time between being a consumer and producer, he must set up two collectively exhaustive markets, the coconut market and the labour market. [5] He also sets up a firm, of which he becomes the sole shareholder. The firm will want to maximise profits by deciding how much labour to hire and how many coconuts to produce according to their prices. As a worker of the firm, Crusoe will collect wages, as a shareholder, he will collect profits and as a consumer, he will decide how much of the firm's output to purchase according to his income and the prevailing market prices. [5] Let's assume that a currency called "Dollars" has been created by Robinson to manage his finances. For simplicity, assume that PriceCoconuts = $1.00. This assumption is made to make the calculations in the numerical example easy because the inclusion of prices will not alter the result of the analysis. For more details, refer to numéraire commodities.
Assume that when the firm produces C amount of total coconuts, represents its profit level. Also assume that when the wage rate at which the firm employs labour is w, L is the amount of labour that will be employed. Then,
The above function describes iso-profit lines (the locus of combinations between labour and coconuts that produce a constant profit of Π). Profits can be maximised when the marginal product of labour equals the wage rate (marginal cost of production). [7] Symbolically,
Graphically, the iso-profit line must be tangent to the production function. [1]
The vertical intercept of the iso-profit line measures the level of profit that Robinson Crusoe's firm will make. This level of profit, Π, has the ability to purchase Π dollars worth of coconuts. Since PriceCoconuts is $1.00, Π number of coconuts can be purchased. Also, the firm will declare a dividend of Π dollars. This will be given to the firm's sole shareholder, Crusoe himself. [1]
As a consumer, Crusoe will have to decide how much to work (or indulge in leisure) and hence consume. [7] He can choose to not work at all, since he has an endowment of Π dollars from being a shareholder. [1] Let us instead consider the more realistic case of him deciding to work for a few hours. His labour consumption choice can be illustrated in figure 4:
Note that labour is assumed to be a 'bad', i.e., a commodity that a consumer doesn't like. Its presence in his consumption basket lowers the utility he derives. [1] On the other hand, coconuts are goods. This is why the indifference curves are positively sloped. The maximum amount of labour is indicated by L'. The distance from L' to the chosen supply of labour (L*) gives Crusoe's demand for leisure.
Notice Crusoe's budget line. It has a slope of w and passes through the point (0,Π). This point is his endowment level i.e., even when he supplies 0 amount of labour, he has Π amount of coconuts (dollars) to consume. Given the wage rate, Crusoe will choose how much to work and how much to consume at that point where,
At equilibrium, the demand for coconuts will equal the supply of coconuts and the demand for labour will equal the supply of labour. [5]
Graphically this occurs when the diagrams under consumer and producer are superimposed. [7] Notice that,
This ensures that the slopes of the indifference curves and the production set are the same.
As a result, Crusoe ends up consuming at the same point he would have if he made all the above decisions together. In other words, using the market system has the same outcome as choosing the individual utility maximisation and cost minimisation plans. [1] This is an important result when put into a macro level perspective because it implies that there exists a set of prices for inputs and outputs in the economy such that the profit-maximising behaviour of firms along with the utility-maximizing actions of individuals results in the demand for each good equaling the supply in all markets. This means that a competitive equilibrium can exist. The merit of a competitive equilibrium is that an efficient allocation of resources is achievable. [1] In other words, no economic agent can be made better off without making another economic agent worse off. [8]
Let's assume that there is another commodity that Crusoe can produce apart from coconuts, for example, fish. Now, Robinson has to decide how much time to spare for both activities, i.e. how many coconuts to gather and how many fish to hunt. [1] The locus of the various combinations of fish and coconuts that he can produce from devoting different amounts of time to each activity is known as the production possibilities set. [9] This is depicted in the figure 6:
The boundary of the production possibilities set is known as the production-possibility frontier (PPF). [9] This curve measures the feasible outputs that Crusoe can produce, with a fixed technological constraint and given amount of resources. In this case, the resources and technological constraints are Robinson Crusoe's labour. [1]
The shape of the PPF depends on the nature of the technology in use. [1] [9] Here, technology refers to the type of returns to scale prevalent. In figure 6, the underlying assumption is the usual decreasing returns to scale, due to which the PPF is concave to the origin. In case we assumed increasing returns to scale, say if Crusoe embarked upon a mass production movement and hence faced decreasing costs, the PPF would be convex to the origin. The PPF is linear with a downward slope in two circumstances:
So in the Robinson Crusoe economy, the PPF will be linear due to the presence of only one input.
Suppose that Crusoe can produce 4 pounds of fish or 8 pounds of coconuts per hour. If he devotes Lf hours to fish gathering and Lc hours to gathering coconuts, he will produce 4Lf pounds of fish and 8Lc pounds of coconuts. Suppose that he decides to work for 12 hours a day. Then the production possibilities set will consist of all combinations of fish, F, and coconuts, C, such that
Solve the first two equations and substitute in the third to get
This equation represents Crusoe's PPF. The slope of this PPF measures the Marginal rate of transformation (MRT), i.e., how much of the first good must be given up in order to increase the production of the second good by one unit. If Crusoe works one hour less on hunting fish, he will have 4 less fish. If he devotes this extra hour to collecting coconuts, he will have 8 extra coconuts. The MRT is thus,
Under this section, the possibility of trade is introduced by adding another person to the economy. Suppose that the new worker who is added to the Robinson Crusoe economy has different skills in gathering coconuts and hunting fish. [10] The second person is called "Friday".
Friday can produce 8 pounds of fish or 4 pounds of coconuts per hour. If he too decides to work for 12 hours, his production possibilities set will be determined by the following relations:
Thus, MRT Coconuts, Fish [1]
This means that for every pound of coconuts Friday gives up, he can produce 2 more pounds of fish.
So, we can say that Friday has a comparative advantage [10] in hunting fish while Crusoe has a comparative advantage in gathering coconuts. Their respective PPFs can be shown in the following diagram:
The joint production possibilities set at the extreme right shows the total amount of both commodities that can be produced by Crusoe and Friday together. It combines the best of both workers. [1] If both of them work to gather coconuts only, the economy will have 144 coconuts in all, 96 from Crusoe and 48 from Friday. (This can be obtained by setting F = 0 in their respective PPF equations and summing them up). Here the slope of the joint PPF is −1/2.
If we want more fish, we should shift that person who has a comparative advantage in fish hunting (i.e. Friday) out of coconut gathering and into fish hunting. When Friday is producing 96 pounds of fish, he is fully occupied. If fish production is to be increased beyond this point, Crusoe will have to start hunting fish. Here onward, the slope of the joint PPF is −2. If we want to produce only fish, then the economy will have 144 pounds of fish, 48 from Crusoe and 96 from Friday. Thus the joint PPF is kinked because Crusoe and Friday have comparative advantages in different commodities. As the economy gets more and more ways of producing output and different comparative advantages, the PPF becomes concave. [1]
Assume that there are c units of coconut and f units of fish available for consumption in the Crusoe Friday economy. Given this endowment bundle (c,f), the Pareto efficient bundle can be determined at the mutual tangency of Crusoe's and Friday's indifference curves in the Edgeworth box along the Pareto Set (contract curve). These are the bundles at which Crusoe's and Friday's marginal rate of substitution are equal. [1] In a simple exchange economy, the contract curve describes the set of bundles that exhaust the gains from trade. But in a Robinson Crusoe/Friday economy, there is another way to exchange goods – to produce less of one good and more of the other. [5]
From the figure 8, it is clear that an economy operating at a position where the MRS of either Crusoe or Friday is not equal to the MRT between coconuts and fish cannot be Pareto efficient. This is because the rate at which, say Friday is willing to trade coconuts for fish is different from the rate at which coconuts can be transformed into fish. Thus, there is a way to make Friday better off by rearranging the production pattern. [1]
Thus for Pareto efficiency,
(for both Crusoe and Friday)
This can be achieved in a competitive market by decentralising production and consumption decisions, i.e. Crusoe and Friday will both solve their own problems of how much to consume and produce independently. [7]
In economics, specifically general equilibrium theory, a perfect market, also known as an atomistic market, is defined by several idealizing conditions, collectively called perfect competition, or atomistic competition. In theoretical models where conditions of perfect competition hold, it has been demonstrated that a market will reach an equilibrium in which the quantity supplied for every product or service, including labor, equals the quantity demanded at the current price. This equilibrium would be a Pareto optimum.
In economics, utility is a measure of the satisfaction that a certain person has from a certain state of the world. Over time, the term has been used in at least two different meanings.
In economics, an indifference curve connects points on a graph representing different quantities of two goods, points between which a consumer is indifferent. That is, any combinations of two products indicated by the curve will provide the consumer with equal levels of utility, and the consumer has no preference for one combination or bundle of goods over a different combination on the same curve. One can also refer to each point on the indifference curve as rendering the same level of utility (satisfaction) for the consumer. In other words, an indifference curve is the locus of various points showing different combinations of two goods providing equal utility to the consumer. Utility is then a device to represent preferences rather than something from which preferences come. The main use of indifference curves is in the representation of potentially observable demand patterns for individual consumers over commodity bundles.
In economics, profit maximization is the short run or long run process by which a firm may determine the price, input and output levels that will lead to the highest possible total profit. In neoclassical economics, which is currently the mainstream approach to microeconomics, the firm is assumed to be a "rational agent" which wants to maximize its total profit, which is the difference between its total revenue and its total cost.
The theory of consumer choice is the branch of microeconomics that relates preferences to consumption expenditures and to consumer demand curves. It analyzes how consumers maximize the desirability of their consumption, by maximizing utility subject to a consumer budget constraint. Factors influencing consumers' evaluation of the utility of goods include: income level, cultural factors, product information and physio-psychological factors.
In economics, the marginal cost is the change in the total cost that arises when the quantity produced is increased, i.e. the cost of producing additional quantity. In some contexts, it refers to an increment of one unit of output, and in others it refers to the rate of change of total cost as output is increased by an infinitesimal amount. As Figure 1 shows, the marginal cost is measured in dollars per unit, whereas total cost is in dollars, and the marginal cost is the slope of the total cost, the rate at which it increases with output. Marginal cost is different from average cost, which is the total cost divided by the number of units produced.
In microeconomics, a production–possibility frontier (PPF), production possibility curve (PPC), or production possibility boundary (PPB) is a graphical representation showing all the possible options of output for two goods that can be produced using all factors of production, where the given resources are fully and efficiently utilized per unit time. A PPF illustrates several economic concepts, such as allocative efficiency, economies of scale, opportunity cost, productive efficiency, and scarcity of resources.
In economics, the marginal rate of substitution (MRS) is the rate at which a consumer can give up some amount of one good in exchange for another good while maintaining the same level of utility. At equilibrium consumption levels, marginal rates of substitution are identical. The marginal rate of substitution is one of the three factors from marginal productivity, the others being marginal rates of transformation and marginal productivity of a factor.
Welfare economics is a field of economics that applies microeconomic techniques to evaluate the overall well-being (welfare) of a society.
In economics, an Edgeworth box, sometimes referred to as an Edgeworth-Bowley box, is a graphical representation of a market with just two commodities, X and Y, and two consumers. The dimensions of the box are the total quantities Ωx and Ωy of the two goods.
In microeconomics, the contract curve or Pareto set is the set of points representing final allocations of two goods between two people that could occur as a result of mutually beneficial trading between those people given their initial allocations of the goods. All the points on this locus are Pareto efficient allocations, meaning that from any one of these points there is no reallocation that could make one of the people more satisfied with his or her allocation without making the other person less satisfied. The contract curve is the subset of the Pareto efficient points that could be reached by trading from the people's initial holdings of the two goods. It is drawn in the Edgeworth box diagram shown here, in which each person's allocation is measured vertically for one good and horizontally for the other good from that person's origin ; one person's origin is the lower left corner of the Edgeworth box, and the other person's origin is the upper right corner of the box. The people's initial endowments are represented by a point in the diagram; the two people will trade goods with each other until no further mutually beneficial trades are possible. The set of points that it is conceptually possible for them to stop at are the points on the contract curve.
In economics, diminishing returns are the decrease in marginal (incremental) output of a production process as the amount of a single factor of production is incrementally increased, holding all other factors of production equal. The law of diminishing returns states that in productive processes, increasing a factor of production by one unit, while holding all other production factors constant, will at some point return a lower unit of output per incremental unit of input. The law of diminishing returns does not cause a decrease in overall production capabilities, rather it defines a point on a production curve whereby producing an additional unit of output will result in a loss and is known as negative returns. Under diminishing returns, output remains positive, but productivity and efficiency decrease.
An isoquant, in microeconomics, is a contour line drawn through the set of points at which the same quantity of output is produced while changing the quantities of two or more inputs. The x and y axis on an isoquant represent two relevant inputs, which are usually a factor of production such as labour, capital, land, or organisation. An isoquant may also be known as an “Iso-Product Curve”, or an “Equal Product Curve”.
In economics, an isocost line shows all combinations of inputs which cost the same total amount. Although similar to the budget constraint in consumer theory, the use of the isocost line pertains to cost-minimization in production, as opposed to utility-maximization. For the two production inputs labour and capital, with fixed unit costs of the inputs, the equation of the isocost line is
Cournot competition is an economic model used to describe an industry structure in which companies compete on the amount of output they will produce, which they decide on independently of each other and at the same time. It is named after Antoine Augustin Cournot (1801–1877) who was inspired by observing competition in a spring water duopoly. It has the following features:
There are two fundamental theorems of welfare economics. The first states that in economic equilibrium, a set of complete markets, with complete information, and in perfect competition, will be Pareto optimal. The requirements for perfect competition are these:
In microeconomics, the property of local nonsatiation (LNS) of consumer preferences states that for any bundle of goods there is always another bundle of goods arbitrarily close that is strictly preferred to it.
In economics, supply is the amount of a resource that firms, producers, labourers, providers of financial assets, or other economic agents are willing and able to provide to the marketplace or to an individual. Supply can be in produced goods, labour time, raw materials, or any other scarce or valuable object. Supply is often plotted graphically as a supply curve, with the price per unit on the vertical axis and quantity supplied as a function of price on the horizontal axis. This reversal of the usual position of the dependent variable and the independent variable is an unfortunate but standard convention.
In economics, the marginal product of labor (MPL) is the change in output that results from employing an added unit of labor. It is a feature of the production function and depends on the amounts of physical capital and labor already in use.
In microeconomics, a monopoly price is set by a monopoly. A monopoly occurs when a firm lacks any viable competition and is the sole producer of the industry's product. Because a monopoly faces no competition, it has absolute market power and can set a price above the firm's marginal cost.
University courses
Articles