Rockbridgeite

Last updated
Rockbridgeite
General
Category Mineral
Formula
(repeating unit)
Fe2+Fe3+4(PO4)3(OH)5
IMA symbol Rkb [1]
Strunz classification 8.BC.10
Dana classification41.9.2.1
Crystal system Orthorhombic
Crystal class Dipyramidal (2/m2/m2/m)
(same H-M symbol)
Space group Bbmm
Identification
Formula mass 648.96 g/mol
ColorVaries from green, to black, to brownish green, to reddish brown
Crystal habit Euhedral crystals rare; typically fibrous in crusts, botryoidal and drusy masses
Twinning Cruciform twins possible
Cleavage Perfect on {100}, Distinct on {010}, Distinct on {001}
Fracture Uneven
Tenacity Brittle
Mohs scale hardness4.5
Luster Vitreous to dull
Streak Greenish gray
Diaphaneity Subtranslucent
Specific gravity 3.40
Optical propertiesBiaxial (+)
Refractive index Nx = 1.875, Ny = 1.880, Nz = 1.897
Birefringence 0.0220
Pleochroism (x): light brown to light yellow-brown (y): bluish green. (z): dark bluish green.
Solubility Soluble in HCl, but not in HNO3 or H2SO4 [2]
References [2] [3] [4] [5]

Rockbridgeite is an anhydrous phosphate mineral in the "Rockbridgeite" supergroup with the chemical formula Fe2+Fe3+4(PO4)3(OH)5. It was discovered at the since-shut-down Midvale Mine in Rockbridge County, Virginia, United States. The researcher who first identified it, Clifford Frondel, named it in 1949 for its region of discovery, Rockbridge County.

Contents

Structure

The stable form of rockbridgeite is orthorhombic 2/m2/m2/m, space group Bbmm. Face-sharing trimers in the structure share octahedron corners, forming chains of octahedra extending in the direction of the b-axis. Adjacent chains formed from two trimers and (PO4) groups extending along the direction of the a-axis, resulting in sheets parallel to (001). Each chain of octahedra is connected by a layer of tetrahedra extending along the direction of the a-axis. [6]

Unit cell

The unit cell parameters are a = 14 Å, b = 17 Å, and c = 5.2 Å, with 4 formula units per unit cell (Z = 4).
More accurate values are given by various sources as follows.

Optical properties

Rockbridgeite varies from green, to black, to brownish green, to reddish brown. [5] It is subtranslucent, with a greenish gray streak and vitreous to dull luster. [5] The refractive indices are Nx = 1.875, Ny = 1.880, Nz = 1.897. [4]

Physical properties

Rockbridgeite shows perfect cleavage on {100}, distinct cleavage on {010}, and distinct cleavage on {001}. Rockbridgeite is a brittle mineral, with an uneven fracture, hardness 4.5 and specific gravity 3.40. It is soluble in hydrochloric acid HCl, but not in nitric acid HNO3 or sulfuric acid H2SO4.

Environment

Rockbridgeite primarily forms in igneous rocks when the primary iron and manganese phosphates in granite pegmatites undergo mineral alteration through redox reactions, resulting in these phosphates becoming oxidized and causing rockbridgeite to form. More rarely, rockbridgeite can also form in sedimentary rocks in association with limonite from iron ore deposits. Associated minerals include triphylite, hureaulite, barbosalite, roscherite, and limonite. [5]

Localities

The type locality is the since-shut-down Midvale Mine in Rockbridge County, Virginia, United States. Other localities for rockbridgeite include sites in Brazil, Portugal, Bavaria, Saxony, South Australia, Namibia, Zimbabwe, and Morocco. Type material is conserved for reference in Harvard University in Cambridge, Massachusetts, United States. [5]

Related Research Articles

<span class="mw-page-title-main">Mineral</span> Crystalline chemical element or compound formed by geologic processes

In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.

<span class="mw-page-title-main">Brookite</span>

Brookite is the orthorhombic variant of titanium dioxide (TiO2), which occurs in four known natural polymorphic forms (minerals with the same composition but different structure). The other three of these forms are akaogiite (monoclinic), anatase (tetragonal) and rutile (tetragonal). Brookite is rare compared to anatase and rutile and, like these forms, it exhibits photocatalytic activity. Brookite also has a larger cell volume than either anatase or rutile, with 8 TiO2 groups per unit cell, compared with 4 for anatase and 2 for rutile. Iron (Fe), tantalum (Ta) and niobium (Nb) are common impurities in brookite.

<span class="mw-page-title-main">Vivianite</span> Phosphate mineral

Vivianite (Fe2+
3
(PO
4
)
2
·8H
2
O
) is a hydrated iron phosphate mineral found in a number of geological environments. Small amounts of manganese Mn2+, magnesium Mg2+, and calcium Ca2+ may substitute for iron Fe2+ in the structure. Pure vivianite is colorless, but the mineral oxidizes very easily, changing the color, and it is usually found as deep blue to deep bluish green prismatic to flattened crystals.
Vivianite crystals are often found inside fossil shells, such as those of bivalves and gastropods, or attached to fossil bone.

<span class="mw-page-title-main">Scolecite</span>

Scolecite is a tectosilicate mineral belonging to the zeolite group; it is a hydrated calcium silicate, CaAl2Si3O10·3H2O. Only minor amounts of sodium and traces of potassium substitute for calcium. There is an absence of barium, strontium, iron and magnesium. Scolecite is isostructural (having the same structure) with the sodium-calcium zeolite mesolite and the sodium zeolite natrolite, but it does not form a continuous chemical series with either of them. It was described in 1813, and named from the Greek word, σκώληξ (sko-lecks) = "worm" because of its reaction to the blowpipe flame.

<span class="mw-page-title-main">Todorokite</span> Hydrous manganese oxide mineral

Todorokite is a complex hydrous manganese oxide mineral with generic chemical formula (Na,Ca,K,Ba,Sr)
1-x
(Mn,Mg,Al)
6
O
12
·3-4H
2
O
. It was named in 1934 for the type locality, the Todoroki mine, Hokkaido, Japan. It belongs to the prismatic class 2/m of the monoclinic crystal system, but the angle β between the a and c axes is close to 90°, making it seem orthorhombic. It is a brown to black mineral which occurs in massive or tuberose forms. It is quite soft with a Mohs hardness of 1.5, and a specific gravity of 3.49 - 3.82. It is a component of deep ocean basin manganese nodules.

<span class="mw-page-title-main">Vauxite</span> Phosphate mineral

Vauxite is a phosphate mineral with the chemical formula Fe2+Al2(PO4)2(OH)2·6(H2O). It belongs to the laueite – paravauxite group, paravauxite subgroup, although Mindat puts it as a member of the vantasselite Al4(PO4)3(OH)3·9H2O group. There is no similarity in structure between vauxite and paravauxite Fe2+Al2(PO4)2(OH)2·8H2O or metavauxite Fe3+Al2(PO4)2(OH)2·8H2O, even though they are closely similar chemically and all minerals occur together as secondary minerals. Vauxite was named in 1922 for George Vaux Junior (1863–1927), an American attorney and mineral collector.

<span class="mw-page-title-main">Kutnohorite</span> Mineral of calcium manganese carbonate

Kutnohorite is a rare calcium manganese carbonate mineral with magnesium and iron that is a member of the dolomite group. It forms a series with dolomite, and with ankerite. The end member formula is CaMn2+(CO3)2, but Mg2+ and Fe2+ commonly substitute for Mn2+, with the manganese content varying from 38% to 84%, so the formula Ca(Mn2+,Mg,Fe2+)(CO3)2 better represents the species. It was named by Professor Bukowsky in 1901 after the type locality of Kutná Hora, Bohemia, in the Czech Republic. It was originally spelt "kutnahorite" but "kutnohorite" is the current IMA-approved spelling.

<span class="mw-page-title-main">Huttonite</span> Thorium nesosilicate mineral

Huttonite is a thorium nesosilicate mineral with the chemical formula ThSiO4 and which crystallizes in the monoclinic system. It is dimorphous with tetragonal thorite, and isostructual with monazite. An uncommon mineral, huttonite forms transparent or translucent cream–colored crystals. It was first identified in samples of beach sands from the West Coast region of New Zealand by the mineralogist Colin Osborne Hutton (1910–1971). Owing to its rarity, huttonite is not an industrially useful mineral.

<span class="mw-page-title-main">Taranakite</span> Iron-aluminium phosphate mineral

Taranakite is a hydrated alkali iron-aluminium phosphate mineral with chemical formula (K,Na)3(Al,Fe3+)5(PO4)2(HPO4)6·18 H2O. It forms from the reaction of clay minerals or aluminous rocks with solutions enriched in phosphate derived from bat or bird guano or, less commonly, from bones or other organic matter. Taranakite is most commonly found in humid, bat inhabited caves near the boundary of guano layers with the cave surface. It is also found in perennially wet coastal locations that have been occupied by bird colonies. The type location, and its namesake, the Sugar Loaf Islands off Taranaki, New Zealand, is an example of a coastal occurrence.

<span class="mw-page-title-main">Lavendulan</span>

Lavendulan is an uncommon copper arsenate mineral, known for its characteristic intense electric blue colour. It belongs to the lavendulan group, which has four members:

<span class="mw-page-title-main">Fluor-liddicoatite</span>

Fluor-liddicoatite is a rare member of the tourmaline group of minerals, elbaite subgroup, and the theoretical calcium endmember of the elbaite-fluor-liddicoatite series; the pure end-member has not yet been found in nature. Fluor-liddicoatite is indistinguishable from elbaite by X-ray diffraction techniques. It forms a series with elbaite and probably also with olenite. Liddiocoatite is currently a non-approved mineral name, but Aurisicchio et al. (1999) and Breaks et al. (2008) found OH-dominant species. Formulae are

<span class="mw-page-title-main">Tsumebite</span>

Tsumebite is a rare phosphate mineral named in 1912 after the locality where it was first found, the Tsumeb mine in Namibia, well known to mineral collectors for the wide range of minerals found there. Tsumebite is a compound phosphate and sulfate of lead and copper, with hydroxyl, formula Pb2Cu(PO4)(SO4)(OH). There is a similar mineral called arsentsumebite, where the phosphate group PO4 is replaced by the arsenate group AsO4, giving the formula Pb2Cu(AsO4)(SO4)(OH). Both minerals are members of the brackebuschite group.

<span class="mw-page-title-main">Vlasovite</span>

Vlasovite is a rare inosilicate (chain silicate) mineral with sodium and zirconium, with the chemical formula Na2ZrSi4O11. It was discovered in 1961 at Vavnbed Mountain in the Lovozero Massif, in the Northern Region of Russia. The researchers who first identified it, R P Tikhonenkova and M E Kazakova, named it for Kuzma Aleksevich Vlasov (1905–1964), a Russian mineralogist and geochemist who studied the Lovozero massif, and who was the founder of the Institute of Mineralogy, Geochemistry, and Crystal Chemistry of Rare Elements, Moscow, Russia.

<span class="mw-page-title-main">Fluorellestadite</span> Nesosilicate mineral

Fluorellestadite is a rare nesosilicate of calcium, with sulfate and fluorine, with the chemical formula Ca10(SiO4)3(SO4)3F2. It is a member of the apatite group, and forms a series with hydroxylellestadite.

<span class="mw-page-title-main">Magnesiohastingsite</span>

Magnesiohastingsite is a calcium-containing amphibole and a member of the hornblende group. It is an inosilicate (chain silicate) with the formula NaCa2(Mg4Fe3+)(Si6Al2)O22(OH)2 and molar mass 864.69 g. In synthetic magnesiohastingsite it appears that iron occurs both as ferrous iron Fe2+ and as ferric iron Fe3+, but the ideal formula features only ferric iron. It was named in 1928 by Marland P. Billings. The name is for its relationship to hastingsite and its magnesium content. Hastingsite was named for the locality in Dungannon Township, Hastings County, Ontario, Canada.

<span class="mw-page-title-main">Satterlyite</span>

Satterlyite is a hydroxyl bearing iron phosphate mineral. The mineral can be found in phosphatic shales and was first discovered in the Big Fish River area in Yukon Territory, Canada.

<span class="mw-page-title-main">Zigrasite</span>

Zigrasite is a phosphate mineral with the chemical formula of MgZr(PO4)2(H2O)4. Zigrasite was discovered and is only known to occur in the Dunton Quarry at Oxford County, Maine. Zigrasite was specifically found in the giant 1972 gem tourmaline-bearing pocket at the Dunton Quarry. Zigrasite is named after James Zigras who originally discovered and brought the mineral to attention.

<span class="mw-page-title-main">Serrabrancaite</span>

Serrabrancaite is a mineral with the chemical formula MnPO4•H2O and which is named for the locality where it was found, the Alto Serra Branca Pegmatite. The Alto Serra Branca mine has been in operation since the 1940s. It is located in Paraiba, Brazil near a village named Pedra Lavrada. Tantalite is the main mineral mined here. Specimens of serrabrancaite are kept in the Mineralogical Collections of both the Bergakademie Freiberg, Germany and the Martin-Luther Universität Halle, Institut für Geologische Wissenschaften.

Cattiite is a phosphate mineral. The mineral was first found in a veins of dolomite carbonatites veins at the bottom of the Zhelezny (Iron) Mine in the Kovdor massif, Kola Peninsula, Russia. Cattiite was tentatively identified as Mg3(PO4)2•22H2O, which as a high hydrate magnesium orthophosphate. Later structural studies, revealed the existence of two polytypes named Mg3(PO4)2•22H2O-1A1 and Mg3(PO4)2•22H2O-1A2.

Lomonosovite is a phosphate–silicate mineral with the idealized formula Na10Ti4(Si2O7)2(PO4)2O4 early Na5Ti2(Si2O7)(PO4)O2 or Na2Ti2Si2O9*Na3PO4.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 "Rockbridgeite".
  3. Gaines et al (1997) Dana’s New Mineralogy Eighth Edition. Wiley
  4. 1 2 3 Webmin: http://webmineral.com/data/Rockbridgeite.shtml#.YYnPRdbMLzf
  5. 1 2 3 4 5 "Home". handbookofmineralogy.org.
  6. Huminicki, D.M.C.; Hawthorne, F.C. (2002). "The Crystal Chemistry of the Phosphate Minerals. Reviews in Mineralogy and Geochemistry". Reviews in Mineralogy and Geochemistry. 48 (1): 123–253. doi:10.2138/rmg.2002.48.5.

JMol: http://rruff.geo.arizona.edu/AMS/viewJmol.php?amcsd=0000198