Classification of non-silicate minerals

Last updated

This list gives an overview of the classification of non-silicate minerals and includes mostly International Mineralogical Association (IMA) recognized minerals and its groupings. This list complements the List of minerals recognized by the International Mineralogical Association series of articles and List of minerals. Rocks, ores, mineral mixtures, not IMA approved minerals, not named minerals are mostly excluded. Mostly major groups only, or groupings used by New Dana Classification and Mindat .

Contents

Classification of minerals

Introduction

The grouping of the New Dana Classification and of the mindat.org is similar only, and so this classification is an overview only. Consistency is missing too on the group name endings (group, subgroup, series) between New Dana Classification and mindat.org. Category, class and supergroup name endings are used as layout tools in the list as well.

Abbreviations

Category 01

Class: Native elements

Category 02

Class: Sulfide minerals - including Selenides and Tellurides

Class: Sulfosalt minerals

Category 03

Category 04

Spinel group

Nickel-Strunz 04.DH mineral family

IMA/CMNMC revised the Pyrochlore supergroup 2010. [1]

Class: Hydroxides and oxides containing hydroxyl

Category 05

Category 06

Category 07

"Kieserite" supergroup

Alunite supergroup - Part I

Category 08

Class: Anhydrous phosphates

"Alluaudite-Wyllieite" supergroup
"Whitlockite" supergroup
"Monazite" supergroup
"Adelite" supergroup
"Olivenite" supergroup
"Arrojadite" supergroup
  • Anhydrous phosphates, etc. containing hydroxyl or halogen where (A B)m (XO4)4 Zq
    • Palermoite group
    • Arrojadite group (Arrojadite subgroup) (Al in Al site, OH in W site, Fe in M site)
      • Arrojadite KNa4Ca(Mn2+)4(Fe2+)10Al(PO4)12(OH,F)2, Arrojadite-(KNa) KNa4Ca(Fe,Mn,Mg)13Al(PO4)11(PO3OH)(OH,F)2, Arrojadite-(KFe) KNa2CaNa2(Fe2+,Mn,Mg)13Al(PO4)11(PO3OH)(OH,F)2, Arrojadite-(NaFe) NaNa2CaNa2(Fe2+,Mn,Mg)13Al(PO4)11(PO3OH)(OH,F)2, Arrojadite-(BaNa) BaFe2+Na2Ca(Fe2+,Mn,Mg)13Al(PO4)11(PO3OH)(OH,F)2, Arrojadite-(BaFe) (Ba,K,Pb)Na3(Ca,Sr)(Fe2+,Mg,Mn)14Al(PO4)11(PO3OH)(OH,F)2, Arrojadite-(SrFe) SrFe2+Na2Ca(Fe2+,Mn,Mg)13Al(PO4)11(PO3OH)(OH,F)2, Arrojadite-(PbFe) PbFe2+Na2Ca(Fe2+,Mn,Mg)13Al(PO4)11(PO3OH)(OH,F)2
    • Arrojadite group (Fluorarrojadite subgroup) (Al in Al site, F in W site, Fe in M site)
      • Fluorarrojadite-(KNa) KNa4Ca(Fe,Mn,Mg)13Al(PO4)11(PO3OH)(F,OH)2, Fluorarrojadite-(BaNa) BaFe2+Na2Ca(Fe2+,Mn,Mg)13Al(PO4)11(PO3OH)(F,OH)2, Fluorarrojadite-(BaFe) (Ba,K,Pb)Na3(Ca,Sr)(Fe2+,Mg,Mn)14Al(PO4)11(PO3OH)(F,OH)2
    • Arrojadite group (Dickinsonite subgroup) (Fe in Al site, OH in W site, Fe in M site)
      • Dickinsonite? KNa4Ca(Mn2+,Fe2+)14Al(PO4)12(OH)2, Dickinsonite-(KMnNa) KNaMnNa3Ca(Mn,Fe,Mg)13Al(PO4)11(PO4)(OH,F)2, Dickinsonite-(KNaNa) KNaNa4Ca(Mn,Fe,Mg)13Al(PO4)11(PO4)(OH,F)2, Dickinsonite-(KNa) KNa4Ca(Mn,Fe,Mg)13Al(PO4)11(PO4)(OH,F)2, Dickinsonite-(NaNa) Na2Na4Ca(Mn,Fe,Mg)13Al(PO4)11(PO4)(OH,F)2
    • Ferri-arrojadite-(BaNa) BaFe2+Na2Ca(Fe2+,Mn,Mg)13Al(PO4)11(PO3OH)(F,OH)2
    • Lulzacite Sr2Fe2+(Fe2+,Mg)2Al4(PO4)4(OH)10
"Apatite" supergroup
"Rockbridgeite" supergroup
  • Anhydrous phosphates, etc. containing hydroxyl or halogen where (A B)5 (XO4)3 Zq
"Lazulite" supergroup

Class: Hydrated phosphates

"Brackebushite" supergroup
"Turquoise" supergroup
  • Hydrated phosphates, etc., containing hydroxyl or halogen where (A)3 (XO4)2 Zq · xH2O
"Overite" supergroup
  • Hydrated phosphates, etc., containing hydroxyl or halogen where (AB)4 (XO4)3 Zq · xH2O
    • Overite group
    • Jahnsite group
      • Jahnsite-(CaMnMg) CaMnMg2(Fe3+)2(PO4)4(OH)2•8H2O, Jahnsite-(CaMnFe) CaMn2+(Fe2+)2(Fe3+)2(PO4)4(OH)2•8H2O, Jahnsite-(CaMnMn) CaMn2+(Mn2+)2(Fe3+)2(PO4)4(OH)2•8H2O, Jahnsite-(MnMnMn)* MnMnMn2(Fe3+)2(PO4)4(OH)2•8H2O
    • Whiteite group
      • Whiteite-(CaFeMg) Ca(Fe2+,Mn2+)Mg2Al2(PO4)4(OH)2•8H2O, Whiteite-(MnFeMg) (Mn2+,Ca)(Fe2+,Mn2+)Mg2Al2(PO4)4(OH)2•8H2O, Whiteite-(CaMnMg) CaMn2+Mg2Al2(PO4)4(OH)2•8H2O, Rittmannite Mn2+Mn2+Fe2+Al2(OH)2(PO4)4•8H2O, Jahnsite-(CaFeFe) (Ca,Mn)(Fe2+,Mn2+)(Fe2+)2(Fe3+)2(PO4)4(OH)2•8H2O, Jahnsite-(NaFeMg) NaFe3+Mg2(Fe3+)2(PO4)4(OH)2•8H2O, Jahnsite-(CaMgMg) CaMgMg2(Fe3+)2(PO4)4(OH)2•8H2O, Jahnsite-(NaMnMg) NaMnMg2(Fe3+)2(PO4)4(OH)2•8H2O
    • Leucophosphite group
    • Montgomeryite group
    • Strunzite group
    • Laueite group
    • Gatumbaite group
    • Vanuralite group
    • Vauxite group
    • Bermanite group
    • Arthurite group/ Whitmoreite group
    • Sincosite group
    • Paulkerrite group
    • Keckite Ca(Mn,Zn)2(Fe3+)3(PO4)4(OH)3•2H2O, Minyulite KAl2(PO4)2(OH,F)•4H2O, Giniite Fe2+(Fe3+)4(PO4)4(OH)2•2H2O, Metavauxite Fe2+Al2(PO4)2(OH)2•8H2O, Metavauxite Fe2+Al2(PO4)2(OH)2•8H2O, Xanthoxenite Ca4(Fe3+)2(PO4)4(OH)2•3H2O, Beraunite Fe2+(Fe3+)5(PO4)4(OH)5•4H2O, Furongite Al2(UO2)(PO4)3(OH)2•8H2O, Mcauslanite H(Fe2+)3Al2(PO4)4F•18H2O, Vochtenite (Fe2+,Mg)Fe3+[(UO2)(PO4)]4(OH)•(12-13)H2O
Alunite supergroup - Part II

Class: Non simple phosphates

Category 10

Class: Organic minerals

Extras

See also

Related Research Articles

Hydroxide Chemical compound

Hydroxide is a diatomic anion with chemical formula OH. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It functions as a base, a ligand, a nucleophile, and a catalyst. The hydroxide ion forms salts, some of which dissociate in aqueous solution, liberating solvated hydroxide ions. Sodium hydroxide is a multi-million-ton per annum commodity chemical. The corresponding electrically neutral compound HO is the hydroxyl radical. The corresponding covalently bound group –OH of atoms is the hydroxy group. Hydroxide ion and hydroxy group are nucleophiles and can act as catalysts in organic chemistry.

In chemistry, a reactivity series (or activity series) is an empirical, calculated, and structurally analytical progression of a series of metals, arranged by their "reactivity" from highest to lowest. It is used to summarize information about the reactions of metals with acids and water, single displacement reactions and the extraction of metals from their ores.

Silicate mineral Rock-forming minerals with predominantly silicate anions

Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of minerals and make up approximately 90 percent of Earth's crust.

Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.

Single displacement reaction

A single-displacement reaction, also known as single replacement reaction or exchange reaction, is a chemical reaction in which one element is replaced by another in a compound.

A silicide is a type of chemical compound that combines silicon and a (usually) more electropositive element.

Phosphate mineral Nickel–Strunz 9 ed mineral class number 8 (isolated tetrahedral units, mainly)

Phosphate minerals contain the tetrahedrally coordinated phosphate (PO43−) anion along sometimes with arsenate (AsO43−) and vanadate (VO43−) substitutions, and chloride (Cl), fluoride (F), and hydroxide (OH) anions that also fit into the crystal structure.

Carbonate mineral Minerals containing the carbonate ion

Carbonate minerals are those minerals containing the carbonate ion, CO2−
3
.

Oxide mineral Nickel–Strunz 9 ed mineral class number 4

The oxide mineral class includes those minerals in which the oxide anion (O2−) is bonded to one or more metal alloys. The hydroxide-bearing minerals are typically included in the oxide class. The minerals with complex anion groups such as the silicates, sulfates, carbonates and phosphates are classed separately.

Layered double hydroxides

Layered double hydroxides (LDH) are a class of ionic solids characterized by a layered structure with the generic layer sequence [AcB Z AcB]n, where c represents layers of metal cations, A and B are layers of hydroxide anions, and Z are layers of other anions and neutral molecules. Lateral offsets between the layers may result in longer repeating periods.

This list gives an overview of the classification of minerals (silicates) and includes mostly International Mineralogical Association (IMA) recognized minerals and its groupings. This list complements the List of minerals recognized by the International Mineralogical Association series of articles and List of minerals. Rocks, ores, mineral mixtures, non-IMA approved minerals and non-named minerals are mostly excluded.

Field (mineral deposit)

A field is a mineral deposit containing a metal or other valuable resources in a cost-competitive concentration. It is usually used in the context of a mineral deposit from which it is convenient to extract its metallic component. The deposits are exploited by mining in the case of solid mineral deposits and extraction wells in case of fluids.

Manganese phosphate may refer to:

Nickel is one of the metals that can form Tutton's salts. The singly charged ion can be any of the full range of potassium, rubidium, cesium, ammonium (), or thallium. As a mineral the ammonium nickel salt, (NH4)2Ni(SO4)2 · 6 H2O, can be called nickelboussingaultite. With sodium, the double sulfate is nickelblödite Na2Ni(SO4)2 · 4 H2O from the blödite family. Nickel can be substituted by other divalent metals of similar sized to make mixtures that crystallise in the same form.

References

  1. Atencio, D.; Andrade, M.B.; Christy, A.G.; Gieré, R.; Kartashov, P.M. (2010). "Nomenclature of the pyrochlore supergroup of minerals" (PDF). Canadian Mineralogist. 48: 673–698. doi:10.3749/canmin.48.3.673. Archived from the original (PDF) on 2012-03-26. Retrieved 2011-02-24.
  2. "New minerals recently approved by the IMA-CNMNC (IMA No. 2008-047)". Archived from the original on 2015-01-05. Retrieved 2011-01-03.