Root rot

Last updated
Chickpea plant (Cicer arietinum) with root rot. Note the symptomatic discolouration in some of its leaves. Root rot in cicer arietinum (hydro-grown).jpg
Chickpea plant ( Cicer arietinum ) with root rot. Note the symptomatic discolouration in some of its leaves.

Root rot is a condition in which anoxic conditions in the soil or potting media around the roots of a plant cause them to rot. This occurs due to excessive standing water around the roots. [1] It is found in both indoor and outdoor plants, although it is more common in indoor plants due to overwatering, heavy potting media, or containers with poor drainage. The leaves of plants experiencing root rot often yellow and die, and if allowed to continue, the condition can be fatal to the plant.

Contents

To avoid root rot, it is best to only water plants when the soil becomes dry, and to put the plant in a well-drained pot. Using a dense potting media such as one dug up from outdoors can also cause root rot. Plants from different environments have different tolerances for soil moisture: plants evolved for desert conditions will experience root rot at lower moisture levels than plants evolved for tropical conditions. In both indoor and outdoor plants, it can be lethal and there is no effective treatment, though some plants can be propagated so they will not be lost completely.

Many cases of root rot are caused by members of the water mold genus Phytophthora ; perhaps the most aggressive is P. cinnamomi. Spores from root rot causing agents do contaminate other plants, but the rot cannot take hold unless there is adequate moisture. Spores are not only airborne, but are also carried by insects and other arthropods in the soil. It can be controlled by drenching carbendazim. [ citation needed ]

Hydroponics

Root rot can occur in hydroponic applications, if the water is not properly aerated. [1] This is usually accomplished by use of an air pump, air stones, air diffusers and by adjustment of the frequency and length of watering cycles where applicable. Hydroponic air pumps function in much the same way as aquarium pumps, which are used for the same purpose. Root rot and other problems associated with poor water aeration were principal reasons for the development of aeroponics.[ citation needed ]

Particular diseases

Some particular pathogens infect plants and causes root rot. Such pathogens are listed:

See also

Related Research Articles

<span class="mw-page-title-main">Hydroponics</span> Growing plants without soil using nutrients in water

Hydroponics is a type of horticulture and a subset of hydroculture which involves growing plants, usually crops or medicinal plants, without soil, by using water-based mineral nutrient solutions in an artificial environment. Terrestrial or aquatic plants may grow freely with their roots exposed to the nutritious liquid or the roots may be mechanically supported by an inert medium such as perlite, gravel, or other substrates.

<span class="mw-page-title-main">Houseplant</span> Ornamental plant in a home or office

A houseplant, sometimes known as a pot plant, potted plant, or an indoor plant, is an ornamental plant that is grown indoors. As such, they are found in places like residences and offices, mainly for decorative purposes. Common houseplants are usually tropical or semi-tropical, and are often epiphytes, succulents or cacti.

<span class="mw-page-title-main">Aeroponics</span> Mist-based plant growing process

Aeroponics is the process of cultivating plants in an air or mist environment, eliminating the need for soil or an aggregate medium. The term "aeroponic" originates from the ancient Greek: aer (air) and ponos. It falls under the category of hydroponics, as water is employed in aeroponics to deliver nutrients to the plants.

<i>Phytophthora cinnamomi</i> Species of single-celled organism

Phytophthora cinnamomi, also known as cinnamon fungus, is a soil-borne water mould that produces an infection which causes a condition in plants variously called "dieback", "root rot", or, "ink disease".

<span class="mw-page-title-main">Cannabis cultivation</span> Process of planting, growing and harvesting cannabis

Cultivation of cannabis is the production of cannabis infructescences. Cultivation techniques for other purposes differ.

Passive hydroponics, semi-hydroponics or passive subirrigation is a method of growing plants without soil, peat moss, or bark.

This is an alphabetical index of articles related to gardening.

Banksia has a number of adaptations that have so far enabled the genus to survive despite dry, nutrient-poor soil, low rates of seed set, high rates of seed predation and low rates of seedling survival. These adaptations include proteoid roots and lignotubers; specialised floral structures that attract nectariferous animals and ensure effective pollen transfer; and the release of seed in response to bushfire.

<span class="mw-page-title-main">Deep water culture</span> Hydroponic method of plant production

Deep water culture (DWC) is a hydroponic method of plant production by means of suspending the plant roots in a solution of nutrient-rich, oxygenated water. Also known as deep flow technique (DFT), floating raft technology (FRT), or raceway, this method uses a rectangular tank less than one foot deep filled with a nutrient-rich solution with plants floating in Styrofoam boards on top. This method of floating the boards on the nutrient solution creates a near friction-less conveyor belt of floating rafts. DWC, along with nutrient film technique (NFT), and aggregate culture, is considered to be one of the most common hydroponic systems used today. Typically, DWC is used to grow short-term, non-fruiting crops such as leafy greens and herbs. Supposedly, DWC was invented accidentally in 1998 by a legacy cannabis grower who goes by the name of “Snype." This occurred because “Snype” and his (unnamed) associate had to take a trip to Amsterdam and needed a way to feed their cannabis crop while they were away. They built nutrient and water reservoirs that would keep the plants thoroughly fed in their absence, and thusly the DWC system was born. However, this information is not backed up by any reliable source. English physician John Woodward is usually remembered as the first person to grow plants in water culture, although Woodward did note Robert Boyle was conducting similar experiments. Woodward's work was not specifically with DWC systems, however. This system was revised in 2010 to create RDWC. The large volume of water helps mitigate rapid changes in temperature, pH, electrical conductivity (EC), and nutrient solution composition.

<i>Phytophthora palmivora</i> Species of single-celled organism

Phytophthora palmivora is an oomycete that causes bud-rot of palms, fruit-rot or kole-roga of coconut and areca nut. These are among the most serious diseases caused by fungi and moulds in South India. Outbreaks occur almost every year in Malnad, Mysore, North & South Kanara, Malabar and other areas. Similar diseases of palms are also known to occur in Sri Lanka, Mauritius, and Sumatra. The causative organism was first identified as P. palmivora by Edwin John Butler in 1917.

<span class="mw-page-title-main">Mycelial cord</span> Structure produced by fungi

Mycelial cords are linear aggregations of parallel-oriented hyphae. The mature cords are composed of wide, empty vessel hyphae surrounded by narrower sheathing hyphae. Cords may look similar to plant roots, and also frequently have similar functions; hence they are also called rhizomorphs. As well as growing underground or on the surface of trees and other plants, some fungi make mycelial cords which hang in the air from vegetation.

<i>Armillaria luteobubalina</i> Species of fungus in the family Physalacriaceae.

Armillaria luteobubalina, commonly known as the Australian honey fungus, is a species of mushroom in the family Physalacriaceae. Widely distributed in southern Australia, the fungus is responsible for a disease known as Armillaria root rot, a primary cause of Eucalyptus tree death and forest dieback. It is the most pathogenic and widespread of the six Armillaria species found in Australia. The fungus has also been collected in Argentina and Chile. Fruit bodies have cream- to tan-coloured caps that grow up to 10 cm (4 in) in diameter and stems that measure up to 20 cm (8 in) long by 1.5 cm (1 in) thick. The fruit bodies, which appear at the base of infected trees and other woody plants in autumn (March–April), are edible, but require cooking to remove the bitter taste. The fungus is dispersed through spores produced on gills on the underside of the caps, and also by growing vegetatively through the root systems of host trees. The ability of the fungus to spread vegetatively is facilitated by an aerating system that allows it to efficiently diffuse oxygen through rhizomorphs—rootlike structures made of dense masses of hyphae.

Pythium dissotocum is a plant pathogen infecting strawberry and rice.

<span class="mw-page-title-main">Ebb and flow hydroponics</span> Hydroponic farming technique

Ebb and flow hydroponics is a form of hydroponics that is known for its simplicity, reliability of operation and low initial investment cost. Pots are filled with an inert medium which does not function like soil or contribute nutrition to the plants but which anchors the roots and functions as a temporary reserve of water and solvent mineral nutrients. The hydroponic solution alternately floods the system and is allowed to ebb away.

<span class="mw-page-title-main">Expanded clay aggregate</span> Lightweight aggregate made by heating clay at high temperature in a rotary kiln

Lightweight expanded clay aggregate (LECA) or expanded clay (exclay) is a lightweight aggregate made by heating clay to around 1,200 °C (2,190 °F) in a rotary kiln. The heating process causes gases trapped in the clay to expand, forming thousands of small bubbles and giving the material a porous structure. LECA has an approximately round or oblong shape due to circular movement in the kiln and is available in different sizes and densities. LECA is used to make lightweight concrete products and other uses.

Forest pathology is the research of both biotic and abiotic maladies affecting the health of a forest ecosystem, primarily fungal pathogens and their insect vectors. It is a subfield of forestry and plant pathology.

<i>Armillaria</i> root rot Fungal tree disease

Armillaria root rot is a fungal root rot caused by several different members of the genus Armillaria. The symptoms are variable depending on the host infected, ranging from stunted leaves to chlorotic needles and dieback of twigs and branches. However, all infected hosts display symptoms characteristic of being infected by a white rotting fungus. The most effective ways of management focus on limiting the spread of the fungus, planting resistant species, and removing infected material. This disease poses a threat to the lumber industry as well as affecting recreational areas.

<i>Anthurium clarinervium</i> Species of flowering plant

Anthurium clarinervium is a species of flowering plant in the family Araceae native to Chiapas, Mexico. The Anthurium genus is known to contain approximately 1,000 species, resulting in one of the most diverse Central American tropical plant genera.

Black rot on orchids is caused by Pythium and Phytophthora species. Black rot targets a variety of orchids but Cattleya orchids are especially susceptible. Pythium ultimum and Phytophthora cactorum are known to cause black rot in orchids.

Cranberry Root Rot (CRR) is a disease in cranberries that can cause a decline in yield.

References

  1. 1 2 - Hydroponics Root Rot: What is It, How To Treat It, How to Prevent It Origin Hydroponics. June 2, 2018 - Root Rot In Your Hydroponic System: 4 Reasons (+ Solutions) YOUR INDOOR HERBS AND GARDEN. n.d - Tips For Preventing Root Rot In Hydroponics Fresh Air With Housplants. February 3, 2022.
  2. Old, K. M., See, L. S., Sharma, J. K., & Yuan, Z. Q. (2000). ROOT ROT. In A Manual of Diseases of Tropical Acacias in Australia, South-East Asia and India (pp. 88). Center for International Forestry Research. http://www.jstor.org/stable/resrep02154.21
  3. 1 2 Old, K. M., See, L. S., Sharma, J. K., & Yuan, Z. Q. (2000). ROOT ROT. In A Manual of Diseases of Tropical Acacias in Australia, South-East Asia and India (pp. 89). Center for International Forestry Research. http://www.jstor.org/stable/resrep02154.21
  4. "Arrive Clean, Leave Clean" (PDF). environment.gov.au. April 12, 2023. p. 4. Retrieved April 12, 2023.