Chickpea

Last updated

Chickpeas
Chickpea BNC.jpg
Sprouted chickpea
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Rosids
Order: Fabales
Family: Fabaceae
Subfamily: Faboideae
Genus: Cicer
Species:
C. arietinum
Binomial name
Cicer arietinum
L.
Synonyms [1]
  • Cicer albumhort.
  • Cicer arientiniumL. [Spelling variant]
  • Cicer arientinumL. [Spelling variant]
  • Cicer edessanumBornm.
  • Cicer grossumSalisb.
  • Cicer nigrumhort.
  • Cicer physodesRchb.
  • Cicer rotundumAlef.
  • Cicer sativumSchkuhr
  • Cicer sintenisiiBornm.
  • Ononis crotalarioidesM.E.Jones
Cicer arietinum noir - MHNT Cicer arietinum noir MHNT.BOT.2017.12.2.jpg
Cicer arietinum noirMHNT

The chickpea or chick pea (Cicer arietinum) is an annual legume of the family Fabaceae, subfamily Faboideae, [2] [3] cultivated for its edible seeds. Its different types are variously known as gram [4] [5] or Bengal gram; [5] chhola, chhana, chana, or channa; garbanzo [5] or garbanzo bean; or Egyptian pea. [4] It is one of the earliest cultivated legumes, the oldest archaeological evidence of which was found in Syria. [6] [7] [8]

Contents

Chickpeas are high in protein. The chickpea is a key ingredient in Mediterranean and Middle Eastern cuisines, used in hummus, and, when soaked and coarsely ground with herbs and spices then made into patties and fried, falafel. As an important part of Indian cuisine, it is used in salads, soups and stews, and curry, in chana masala, and in other food products that contain channa (chickpeas). In 2022, India accounted for 75% of global chickpea production. [9]

Etymology

Chickpeas have been cultivated for at least ten thousand years. [10] Cultivation spread from the Fertile Crescent eastward toward South Asia and into Europe through the Balkans. [11] [12] Historical linguistics have found ancestral words relating to chickpeas in the prehistoric Proto-Indo-European language family that evolved into the Indo-European languages. [13] The Proto-Indo-European roots *kek- and *k'ik'- that denoted both 'pea' and 'oat' appeared in the Pontic–Caspian steppe of Eastern Europe between 4,500 and 2,500 BCE. [14] :49 [15] [16] As speakers of the language became isolated from each other through the Indo-European migrations, the regional dialects diverged due to contact with other languages and dialects, and transformed into the known ancient Indo-European languages. [17] :243–244 The Old Prussian word kekêrs, appearing between 1 and 100 CE, retained the 'pea' meaning of the word, but in most cases, the word came to be used to denote chickpeas. [15] In Old Macedonian, the word κίκερροι appeared between 1000 and 400 BCE, and may have evolved from the Proto-Hellenic word *κικριός. [15] In Ancient Rome, the Latin word cicer for chickpeas appeared around 700 BCE, [15] and is probably derived from the word kickere used by the Pelasgians that inhabited north Greece before Greek-speaking tribes took over. [18] :13 The Old Armenian word siseŕn for chickpeas appeared before 400 CE. [15] Over time, linkages between languages led to other descendant words, including the Albanian word qiqër, the Swedish word kikär, the Slovak word cícer, the Estonian word kikerhernes, the Basque word txitxirio, and the Maltese word cicra. [13]

The Latin word cicer evolved into words for chickpeas in nearly all extinct and living Romance languages, including the Mozarabic word chíchar; the Catalan words ceirons, cigró, cigronera, cigrons and ciurons; the Walloon words poes d' souke; the Old French words ceire and cice; and the Modern French terms cicérole, cicer tete-de-belier, and pois chiche. [14] :50 These words were borrowed by many geographically neighboring languages, such as the French term pois chiche becoming chich-pease in Old English. [19] [10] The word pease, like the modern words for wheat and corn, was both singular and plural, but since it had an "s" sound at the end of it which became associated with the plural form of nouns, English speakers by the end of the 17th century were starting to refer to a single grain of pease as a pea. [10]

Other important Proto-Indo-European roots relating to chickpeas are *erəgw[h]-, eregw(h)o-, and erogw(h)o-, which were used to denote both the kernel of a legume and a pea. [14] :51 This root evolved into the Greek word erebinthos, mentioned in The Iliad in around 800 BCE and in Historia Plantarum by Theophrastus, written between 350 and 287 BCE. [18] :13 The Portugese words ervanço and gravanço; the Asturian word garbanzu; the Galician word garavanzo; the French words garvanche, garvance, and garvane; and the Spanish word garbanzo are all related to the Greek term. [14] :51 [18] :13 In American English, the term garbanzo to refer to the chickpea appeared in writing as early as 1759, [20] :87 and the seed is also referred to as a garbanzo bean. [20] :88 [21] :34

Taxonomy

Chickpea (Cicer arietinum) is a member of the genus Cicer and the legume family, Fabaceae. [22] :231 Carl Linnaeus described it in the first edition of Species Plantarum in 1753, marking the first use of binomial nomenclature for the plant. [21] :11 Linnaeus classified the plant in the genus Cicer, which was the Latin term for chickpeas, [21] :2 crediting Joseph Pitton de Tournefort's 1694 publication Elemens de botanique, ou Methode pour connoitre les plantes which called it "Cicer arietinum". [21] :11 Tournefort himself repeated the names the plant that had been used since antiquity. [21] :11

The specific epithet arietinum is based on the shape of the seed resembling the head of a ram. [18] :3 In Ancient Greece, Theophrastus described one of the varieties of chickpea called "rams" in Historia Plantarum . [23] :173 The Roman writer on agriculture Lucius Junius Moderatus Columella wrote about chickpeas in the second book of De re rustica, published in about 64 CE, [24] :xiv and said that the chickpea was called arietillum. [24] :169 Pliny the Elder expanded further in Naturalis Historia that this name was due to the seed's resemblance to the head of a ram. [24] :169

Cicer arietinum is the type species of the genus. [21] :10 The wild species C. reticulatum is interfertile with C. arietinum and is considered to be the progenitor of the cultivated species. [25] C. echinospermum is also closely related and can be hybridized with both C. reticulatum and C. arietinum, but generally produce infertile seeds. [25]

History

The earliest well-preserved archaeobotanical evidence of chickpea outside its wild progenitor's natural distribution area comes from the site of Tell el-Kerkh, in modern Syria, dating back to the early Pre-Pottery Neolithic period around c.8400 BC. [26]

Cicer reticulatum is the wild progenitor of chickpeas. This species currently grows only in southeast Turkey, where it is believed to have been domesticated. The domestication event can be dated to around 7000 BC. Domesticated chickpeas have been found at Pre-Pottery Neolithic B sites in Turkey and the Levant, namely at Çayönü, Hacilar, and Tell es-Sultan (Jericho). [27] Chickpeas then spread to the Mediterranean region around 6000 BC and to South Asia (to Indus Valley) around 3000 BC. [27]

In southern France, mesolithic layers in a cave at L'Abeurador, Hérault, have yielded chickpeas, carbon-dated to 6790±90 BC. [28] They were found in the late Neolithic (about 3500 BC) sites at Thessaly, Kastanas, Lerna and Dimini, Greece.

Chickpeas are mentioned in Charlemagne's Capitulare de villis (about 800 AD) as cicer italicum, as grown in each imperial demesne. Albertus Magnus mentions red, white, and black varieties. The 17th-century botanist Nicholas Culpeper noted "chick-pease or cicers" are less "windy" than peas and more nourishing. Ancient people also associated chickpeas with Venus because they were said to offer medical uses such as increasing semen and milk production, inducing menstruation and urination, and helping to treat kidney stones. [29] "White cicers" were thought to be especially strong and helpful. [29]

In 1793, ground, roasted chickpeas were noted by a German writer as a substitute for coffee in Europe. [30] In the First World War, they were grown for this use in some areas of Germany. [31] They are still sometimes brewed instead of coffee. [30]

Genome sequencing

Sequencing of the genome of the chickpea has been completed for 90 chickpea genotypes, including several wild species. [32] A collaboration of 20 research organizations, led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), sequenced CDC Frontier, a kabuli chickpea variety, and identified more than 28,000 genes and several million genetic markers. [33]

Description

Flowering and fruiting chickpea plant Chickpeas Plant.jpg
Flowering and fruiting chickpea plant
Chickpea pods Chickpea pods.jpg
Chickpea pods

The plant grows to 20–50 cm (8–20 in) high and has small, feathery leaves on either side of the stem. Chickpeas are a type of pulse, with one seedpod containing two or three peas. It has white flowers with blue, violet, or pink veins.

Varieties

The most common variety of chickpea in South Asia, Ethiopia, Mexico, and Iran is the desi type, also called Bengal gram. [34] It has small, dark seeds and a rough coat. It can be black, green or speckled. In Hindi, it is called desi chana 'native chickpea' or kala chana 'black chickpea', and in Assamese and Bengali, it is called boot or chholaa boot. It can be hulled and split to make chana dal , Kurukshetra Prasadam (channa laddu), [35] and bootor daali.

Around the Mediterranean and in the Middle East, the most common variety of chickpea is the kabuli type. It is large and tan-colored, with a smooth coat. It was introduced to India in the 18th century from Afghanistan and is called kabuli chana in Hindi. [36]

An uncommon black chickpea, ceci neri, is grown only in Apulia and Basilicata, in southern Italy. It is around the same size as garbanzo beans, larger and darker than the 'desi' variety.

Uses

Culinary

Chana dal, split Bengal gram Bengal gram, chickpea ( cholaar ddaal).JPG
Chana dal, split Bengal gram
Hummus with olive oil Hummus from The Nile.jpg
Hummus with olive oil
Dhokla, steamed chickpea flour snack Dhokla on Gujrart.jpg
Dhokla, steamed chickpea flour snack

Chickpeas are usually rapidly boiled for 10 minutes and then simmered for longer. Dried chickpeas need a long cooking time (1–2 hours) but will easily fall apart when cooked longer. If soaked for 12–24 hours before use, cooking time can be shortened by around 30 minutes. Chickpeas can also be pressure cooked or sous vide cooked at 90 °C (194 °F).

Mature chickpeas can be cooked and eaten cold in salads, cooked in stews, ground into flour, ground and shaped in balls and fried as falafel , made into a batter and baked to make farinata or socca, or fried to make panelle . Chickpea flour is known as gram flour or besan in South Asia and is used frequently in South Asian cuisine.

In Portugal, chickpeas are one of the main ingredients in rancho, eaten with pasta, meat, or rice. They are used in other hot dishes with bacalhau and in soups, meat stews, salads mixed with tuna and vegetables, olive oil, vinegar, hot pepper and salt. In Spain, they are used cold in tapas and salads, as well as in cocido madrileño .

Hummus is the Arabic word for chickpeas, which are often cooked and ground into a paste and mixed with tahini (sesame seed paste) to make ḥummuṣ bi ṭaḥīna , usually called simply hummus in English. By the end of the 20th century, hummus had become common in American cuisine: [37] by 2010, 5% of Americans consumed it regularly, [37] and it was present at some point in 17% of American households. [38]

In the Middle East, chickpeas are also roasted, spiced, and eaten as a snack, such as leblebi .

Chickpeas and Bengal grams are used to make curries. [39] They are one of the most popular vegetarian foods in the Indian subcontinent [40] and in diaspora communities of many other countries, served with a variety of bread or steamed rice. Popular dishes in Indian cuisine are made with chickpea flour, such as mirchi bajji and mirapakaya bajji. [41] In India, as well as in the Levant, unripe chickpeas are often picked out of the pod and eaten as a raw snack, and the leaves are eaten as a leaf vegetable in salads. In India, desserts such as besan halwa [42] and sweets such as mysore pak, and laddu are made.

Chickpea flour is used to make "Burmese tofu", which was first known among the Shan people of Burma. In South Asian cuisine, chickpea flour (besan) is used as a batter to coat vegetables before deep frying to make pakoras. The flour is also used as a batter to coat vegetables and meats before frying or fried alone, such as panelle (little bread), a chickpea fritter from Sicily. Chickpea flour is used to make the Mediterranean flatbread socca and is called panisse in Provence, southern France. It is made of cooked chickpea flour, poured into saucers, allowed to set, cut into strips, and fried in olive oil, often eaten during Lent. In Tuscany, chickpea flour (farina di ceci) is used to make an oven-baked pancake: the flour is mixed with water, oil and salt. Chickpea flour, known as kadlehittu in Kannada, is used for making sweet dish Mysore pak.

In the Philippines, chickpeas preserved in syrup are eaten as sweets and in desserts such as halo-halo .

Ashkenazi Jews traditionally serve whole chickpeas, referred to as arbes (אַרבעס) in Yiddish, at the Shalom Zachar celebration for baby boys. The chickpeas are boiled until soft and served hot with salt and lots of ground black pepper. [43]

Guasanas or garbanza is a Mexican chickpea street snack. The beans, while still green, are cooked in water and salt, kept in a steamer to maintain their humidity, and served in a plastic bag.

A chickpea-derived liquid ( aquafaba ) can be used as an egg white replacement to make meringue [44] or ice cream, with the residual pomace used as flour. [45]

Animal feed

Chickpeas are an energy and protein source as animal feed. [46]

Raw chickpeas have a lower trypsin and chymotrypsin inhibitor content than peas, common beans, and soybeans. This leads to higher nutrition values and fewer digestive problems in nonruminants. Nonruminant diets can be completed with 200 g/kg of raw chickpeas to promote egg production and growth of birds and pigs. Higher amounts can be used when chickpeas are treated with heat. [46]

Experiments have shown that ruminants grow equally well and produce an equal amount and quality of milk when soybean or cereal meals are replaced with chickpeas. Pigs show the same performance, but growing pigs experience a negative effect of raw chickpea feed; extruded chickpeas can increase performance even in growing pigs. Only young broilers (starting period) showed worse performance in poultry diet experiments with untreated chickpeas. Fish performed equally well when extruded chickpeas replaced their soybean or cereal diet. [46] Chickpea seeds have also been used in rabbit diets. [34]

Production of chickpeas – 2022
CountryProduction
(millions of tonnes)
Flag of India.svg  India 13.5
Flag of Turkey.svg  Turkey 0.6
Flag of Russia.svg  Russia 0.5
Flag of Ethiopia.svg  Ethiopia 0.5
Flag of Myanmar.svg  Myanmar 0.4
Flag of Pakistan.svg  Pakistan 0.3
World18.1
Source: FAOSTAT of the United Nations [9]

Secondary components of legumes—such as lecithin, polyphenols, oligosaccharides; and amylase, protease, trypsin and chymotrypsin inhibitors—can lead to lower nutrient availability, and thus to impaired growth and health of animals (especially in nonruminants). Ruminants generally have less trouble digesting legumes with secondary components since they can inactivate them in the rumen liquor. Their diets can be supplemented by 300 g/kg or more raw chickpea seeds. [46] However, protein digestibility and energy availability can be improved through treatments such as germination, dehulling, and heat. Extrusion is a very good heat technique to destroy secondary legume components since the proteins are irreversibly denatured. Overprocessing may decrease the nutritional value; extrusion leads to losses in minerals and vitamins, while dry heating does not change the chemical composition. [46]

Production

In 2022, world production of chickpeas was 18 million tonnes, led by India with 75% of the global total (table). [9]

Nutrition

Chickpeas, mature seeds, cooked, no salt
Nutritional value per 100 g (3.5 oz)
Energy 686 kJ (164 kcal)
27.42 g
Sugars 4.8 g
Dietary fibre 7.6 g
Fat
2.59 g
Saturated 0.27 g
Monounsaturated 0.58 g
Polyunsaturated 1.16 g
8.86 g
Vitamins and minerals
Vitamins Quantity
%DV
Vitamin A equiv.
0%
1 μg
Thiamine (B1)
10%
0.12 mg
Riboflavin (B2)
5%
0.06 mg
Niacin (B3)
3%
0.53 mg
Pantothenic acid (B5)
6%
0.29 mg
Vitamin B6
8%
0.14 mg
Folate (B9)
43%
172 μg
Vitamin C
1%
1.3 mg
Vitamin E
2%
0.35 mg
Vitamin K
3%
4 μg
Minerals Quantity
%DV
Calcium
4%
49 mg
Iron
16%
2.89 mg
Magnesium
11%
48 mg
Manganese
45%
1.03 mg
Phosphorus
13%
168 mg
Potassium
10%
291 mg
Sodium
0%
7 mg
Zinc
14%
1.53 mg
Other constituentsQuantity
Water60.21 g

Percentages estimated using US recommendations for adults, [47] except for potassium, which is estimated based on expert recommendation from the National Academies. [48]
Chickpeas, dried seeds, raw
Nutritional value per 100 g (3.5 oz)
Energy 1,581 kJ (378 kcal)
62.95 g
Sugars 10.7 g
Dietary fibre 12.2 g
Fat
6.04 g
Saturated 0.603
Monounsaturated 1.377
Polyunsaturated 2.731
20.5 g
Vitamins and minerals
Vitamins Quantity
%DV
Vitamin A equiv.
0%
3 μg
Thiamine (B1)
40%
0.477 mg
Riboflavin (B2)
16%
0.212 mg
Niacin (B3)
10%
1.541 mg
Pantothenic acid (B5)
32%
1.588 mg
Vitamin B6
31%
0.535 mg
Folate (B9)
139%
557 μg
Vitamin C
4%
4 mg
Vitamin E
5%
0.82 mg
Vitamin K
8%
9 μg
Minerals Quantity
%DV
Calcium
4%
57 mg
Copper
73%
0.656 mg
Iron
24%
4.31 mg
Magnesium
19%
79 mg
Phosphorus
20%
252 mg
Potassium
24%
718 mg
Sodium
1%
24 mg
Zinc
25%
2.76 mg
Other constituentsQuantity
Water7.68 g

Percentages estimated using US recommendations for adults, [47] except for potassium, which is estimated based on expert recommendation from the National Academies. [48]

Chickpeas are a nutrient-dense food, providing rich content (20% or higher of the Daily Value, DV) of protein, dietary fiber, folate, and certain dietary minerals, such as iron and phosphorus in a 100-gram reference amount (see adjacent nutrition table). Thiamin, vitamin B6, magnesium, and zinc contents are moderate, providing 10–16% of the DV. Compared to reference levels established by the United Nations Food and Agriculture Organization and World Health Organization, proteins in cooked and germinated chickpeas are rich in essential amino acids such as lysine, isoleucine, tryptophan, and total aromatic amino acids. [49]

A 100-gram (3+12-ounce) reference serving of cooked chickpeas provides 686 kilojoules (164 kilocalories) of food energy. Cooked chickpeas are 60% water, 27% carbohydrates, 9% protein and 3% fat (table). [46] Seventy-five percent of the fat content is unsaturated fatty acids for which linoleic acid comprises 43% of the total fat. [50]

Effects of cooking

Cooking treatments do not lead to variance in total protein and carbohydrate content. [51] [52] Soaking and cooking of dry seeds possibly induces chemical modification of protein-fibre complexes, which leads to an increase in crude fibre content. Thus, cooking can increase protein quality by inactivating or destroying heat-labile antinutritional factors. [51] Cooking also increases protein digestibility, essential amino acid index, and protein efficiency ratio. Although cooking lowers concentrations of amino acids such as tryptophan, lysine, total aromatic, and sulphur-containing amino acids, their contents are still higher than proposed by the FAO/WHO reference. [51] Raffinose and sucrose and other reducing sugars diffuse from the chickpea into the cooking water and this reduces or completely removes these components from the chickpea. Cooking also significantly reduces fat and mineral content. The B vitamins riboflavin, thiamin, niacin, and pyridoxine dissolve into cooking water at differing rates. [51]

Germination

Germination of chickpeas improves protein digestibility, although at a lower level than cooking. Germination degrades proteins to simple peptides, improving crude protein, nonprotein nitrogen, and crude fibre content. Germination decreases lysine, tryptophan, sulphur and total aromatic amino acids, but most contents are still higher than proposed by the FAO/WHO reference pattern. [51]

Oligosaccharides, such as stachyose and raffinose, are reduced in higher amounts during germination than during cooking. Minerals and B vitamins are retained more effectively during germination than with cooking. Phytic acids are reduced significantly, but trypsin inhibitor, tannin, and saponin reduction is less effective than cooking. [51]

Autoclaving, microwave cooking, boiling

In a 2002 study comparing germination and cooking effects on chickpea nutritional values, all treatments of cooking (autoclaving, microwave cooking, boiling) were found to improve protein digestibility. Essential amino acids were slightly increased by boiling and microwave cooking compared to autoclaving and germination. losses in B-vitamins and minerals in chickpeas cooked by microwaving were smaller than in those cooked by boiling and autoclaving. [51]

Skinning

Chickpeas contain oligosaccharides (raffinose, stachyose, and verbascose) which are indigestible to humans but are fermented in the gut by bacteria, leading to flatulence in susceptible individuals. [53] This can be prevented by skinning the husks from the chickpeas before serving.[ citation needed ]

Leaves

In some parts of the world, young chickpea leaves are consumed as cooked green vegetables. Especially in malnourished populations, it can supplement important dietary nutrients because regions where chickpeas are consumed have sometimes been found to have populations lacking micronutrients. [54] Chickpea leaves have a significantly higher mineral content than either cabbage leaves or spinach leaves. [54] Environmental factors and nutrient availability could influence mineral concentrations in natural settings. Consumption of chickpea leaves may contribute nutrients to the diet. [54]

Research

The consumption of chickpeas is under preliminary research for the potential to improve nutrition and affect chronic diseases. [52] [55]

Heat and nutrient cultivation

Agricultural yield for chickpeas is often based on genetic and phenotypic variability, which has recently been influenced by artificial selection. [56] The uptake of macronutrients such as inorganic phosphorus or nitrogen is vital to the plant development of Cicer arietinum, commonly known as the perennial chickpea. [57] Heat cultivation and macronutrient coupling are two relatively unknown methods used to increase the yield and size of the chickpea. Recent research has indicated that a combination of heat treatment along with the two vital macronutrients, phosphorus and nitrogen, are the most critical components to increasing the overall yield of Cicer arietinum. [57]

Perennial chickpeas are a fundamental source of nutrition in animal feed as they are high-energy and protein sources for livestock. Unlike other food crops, the perennial chickpea can change its nutritional content in response to heat cultivation. Treating the chickpea with a constant heat source increases its protein content almost threefold. [57] Consequently, the impact of heat cultivation affects the protein content of the chickpea itself and the ecosystem it supports. Increasing the height and size of chickpea plants involves using macronutrient fertilization with varying doses of inorganic phosphorus and nitrogen. [58]

The level of phosphorus that a chickpea seed is exposed to during its lifecycle has a positive correlation relative to the height of the plant at full maturity. [58] Increasing the levels of inorganic phosphorus at all doses incrementally increases the height of the chickpea plant. Thus, the seasonal changes in phosphorus soil content, as well as periods of drought that are known to be a native characteristic of the dry Middle-Eastern region where the chickpea is most commonly cultivated, have a strong effect on the growth of the plant itself. Plant yield is also affected by a combination of phosphorus nutrition and water supply, resulting in a 12% increase in crop yield. [58]

Nitrogen nutrition is another factor that affects the yield of Cicer arietinum, although the application differs from other perennial crops regarding the levels administered on the plant. High doses of nitrogen inhibit the yield of the chickpea plant. [59] Drought stress is a likely factor that inhibits nitrogen uptake and subsequent fixation in the roots of Cicer arietinum. The perennial chickpea's growth depends on the balance between nitrogen fixation and assimilation, which is also characteristic of many other agricultural plant types. The influence of drought stress, sowing date, and mineral nitrogen supply affect the plant's yield and size, with trials showing that Cicer arietinum differed from other plant species in its capacity to assimilate mineral nitrogen supply from the soil during drought stress. [59] Additional minerals and micronutrients make the absorption process of nitrogen and phosphorus more available. Inorganic phosphate ions are generally attracted towards charged minerals such as iron and aluminium oxides. [60]

Additionally, growth and yield are also limited by the micronutrients zinc and boron deficiencies in the soil. Boron-rich soil increased chickpea yield and size, while soil fertilization with zinc seemed to have no apparent effect on the chickpea yield. [61]

Pathogens

Pathogens in chickpeas are the main cause of yield loss (up to 90%).[ citation needed ] One example is the fungus Fusarium oxysporum f.sp. ciceris, present in most of the major pulse crop-growing areas and causing regular yield damages between 10 and 15%. [62] Many plant hosts produce heat shock protein 70s including C. arietinum. [63] In response to F. o. ciceris Gupta et al., 2017 finds C. arietinum produces an orthologue of AtHSP70-1, an Arabidopsis HSP70. [63]

From 1978 until 1995, the worldwide number of pathogens increased from 49 to 172, of which 35 were recorded in India. These pathogens originate from groups of bacteria, fungi, viruses, mycoplasma and nematodes and show a high genotypic variation. The most widely distributed pathogens are Ascochyta rabiei (35 countries), Fusarium oxysporum f.sp. ciceris (32 countries) Uromyces ciceris-arietini (25 countries), bean leafroll virus (23 countries), and Macrophomina phaseolina (21 countries). [64] Ascochyta disease emergence is favoured by wet weather; spores are carried to new plants by wind and water splash. [65]

The stagnation of yield improvement over the last decades is linked to the susceptibility to pathogens. [66] Research for yield improvement, such as an attempt to increase yield from 0.8 to 2.0 metric tons per hectare (0.32 to 0.80 long ton/acre; 0.36 to 0.89 short ton/acre) by breeding cold-resistant varieties, is always linked with pathogen-resistance breeding as pathogens such as Ascochyta rabiei and F. o. f.sp. ciceris flourish in conditions such as cold temperature. Research started selecting favourable genes for pathogen resistance and other traits through marker-assisted selection. This method is a promising sign for the future to achieve significant yield improvements. [67]

See also

Related Research Articles

<span class="mw-page-title-main">Bean</span> Seed of one of several genera of the plant family Fabaceae

A bean is the seed of any plant in the legume family (Fabaceae) used as a vegetable for human consumption or animal feed. The seeds are often preserved through drying, but fresh beans are also sold. Most beans are traditionally soaked and boiled, but they can be cooked in many different ways, including frying and baking, and are used in many traditional dishes throughout the world. The unripe seedpods of some varieties are also eaten whole as green beans or edamame, but fully ripened beans contain toxins like phytohemagglutinin and require cooking.

<span class="mw-page-title-main">Teff</span> Edible annual grass native to the Horn of Africa

Teff, also known as Eragrostis tef, Williams lovegrass, or annual bunch grass, is an annual grass, a species of lovegrass native to the Horn of Africa, notably to both Eritrea and Ethiopia. It is cultivated for its edible seeds, also known as teff. Teff was one of the earliest plants domesticated. It is one of the most important staple crops in Ethiopia.

<span class="mw-page-title-main">Lentil</span> Species of flowering plant with edible seeds in the family Fabaceae

The lentil is a legume; it is an annual plant grown for its lens-shaped edible seeds, also called lentils. It is about 40 cm (16 in) tall, and the seeds grow in pods, usually with two seeds in each.

<i>Vicia faba</i> Species of plant in the pea and bean family Fabaceae

Vicia faba, commonly known as the broad bean, fava bean, or faba bean, is a species of vetch, a flowering plant in the pea and bean family Fabaceae. It is widely cultivated as a crop for human consumption, and also as a cover crop. Varieties with smaller, harder seeds that are fed to horses or other animals are called field bean, tic bean or tick bean. Horse bean, Vicia faba var. equinaPers., is a variety recognized as an accepted name. This legume is very common in Southern European, Northern European, East Asian, Latin American and North African cuisines.

<span class="mw-page-title-main">Sprouting</span> Practice of germinating seeds to be eaten raw or cooked

Sprouting is the natural process by which seeds or spores germinate and put out shoots, and already established plants produce new leaves or buds, or other structures experience further growth.

<span class="mw-page-title-main">Legume</span> Plant in the family Fabaceae

Legumes are plants in the family Fabaceae, or the fruit or seeds of such plants. When used as a dry grain for human consumption, the seeds are also called pulses. Legumes are grown agriculturally, primarily for human consumption, but also as livestock forage and silage, and as soil-enhancing green manure. Well-known legumes include beans, chickpeas, peanuts, lentils, lupins, mesquite, carob, tamarind, alfalfa, and clover. Legumes produce a botanically unique type of fruit – a simple dry fruit that develops from a simple carpel and usually dehisces on two sides.

<i>Cicer</i> Genus of flowering plants

Cicer is a genus of the legume family, Fabaceae, and the only genus found in tribe Cicereae. It is included within the IRLC, and its native distribution is across the Middle East and Asia. Its best-known and only domesticated member is Cicer arietinum, the chickpea.

<span class="mw-page-title-main">Mung bean</span> Species of plant

The mung bean or green gram is a plant species in the legume family. The mung bean is mainly cultivated in East, Southeast and South Asia. It is used as an ingredient in both savoury and sweet dishes.

<i>Phaseolus vulgaris</i> Species of plant

Phaseolus vulgaris, the common bean, is a herbaceous annual plant grown worldwide for its edible dry seeds or green, unripe pods. Its leaf is also occasionally used as a vegetable and the straw as fodder. Its botanical classification, along with other Phaseolus species, is as a member of the legume family, Fabaceae. Like most members of this family, common beans acquire the nitrogen they require through an association with rhizobia, which are nitrogen-fixing bacteria.

<i>Vigna subterranea</i> Species of plant

Vigna subterranea is a member of the family Fabaceae. Its name is derived from the Bambara ethnic group. The plant originated in West Africa. As a food and source of income, the Bambara groundnut is considered to be the third most important leguminous crop in those African countries where it is grown, after peanut and cowpea. The crop is mainly cultivated, sold and processed by women, and is, thus, particularly valuable for female subsistence farmers.

<i>Lathyrus sativus</i> Species of plant in the pea family

Lathyrus sativus, also known as grass pea, cicerchia, blue sweet pea, chickling pea, chickling vetch, Indian pea, white pea and white vetch, is a legume commonly grown for human consumption and livestock feed in Asia and East Africa. It is a particularly important crop in areas that are prone to drought and famine, and is thought of as an 'insurance crop' as it produces reliable yields when all other crops fail. The seeds contain a neurotoxin that causes lathyrism, a neurodegenerative disease, if eaten as a primary protein source for a prolonged period.

<span class="mw-page-title-main">Winged bean</span> Species of legume plant

The winged bean, also known as cigarillas, goa bean, four-angled bean, four-cornered bean, manila bean, princess bean, star bean, kamrangi bean, pea, dragon bean, is a tropical herbaceous legume plant.

<i>Lablab</i> Species of plant

Lablab purpureus is a species of bean in the family Fabaceae. It is native to sub-Saharan Africa and India and it is cultivated throughout the tropics for food. English language common names include hyacinth bean, lablab-beanbonavist bean/pea, dolichos bean, seim or sem bean, lablab bean, Egyptian kidney bean, Indian bean, bataw and Australian pea. Lablab is a monotypic genus.

<span class="mw-page-title-main">Phytic acid</span> Chemical compound

Phytic acid is a six-fold dihydrogenphosphate ester of inositol, also called inositol hexaphosphate, inositol hexakisphosphate (IP6) or inositol polyphosphate. At physiological pH, the phosphates are partially ionized, resulting in the phytate anion.

<i>Canavalia gladiata</i> Species of flowering plant

Canavalia gladiata, the sword bean or scimitar bean, is a domesticated plant species in the legume family Fabaceae. It is used as a vegetable in interior central and south central India, though not commercially farmed. The unripe pods are also eaten as a vegetable in Africa and Asia.

<i>Didymella rabiei</i> Species of fungus

Didymella rabiei, commonly called chickpea ascochyta blight fungus, is a fungal plant pathogen of chickpea. Didymella rabiei is the teleomorph of Ascochyta rabiei, which is the anamorph, but both names refer to the same species.

Uromyces ciceris-arietini is a fungal species and plant pathogen infecting chickpea.

<span class="mw-page-title-main">Aquafaba</span> Residual water from cooking legumes, used in recipes to substitute egg whites

Aquafaba is the viscous water in which legume seeds such as chickpeas have been cooked. Its use in cuisine was the discovery of the French musician Joël Roessel.

Chickpeas are a major pulse legume grown in Nepal, either by themselves or as an intercrop with maize or rice. Chickpeas are an important legume to the population, as it is the primary protein source for nearly 2 million Nepalese people. In 2013, Nepal imported approximately US$10.1 million in dried shelled chickpeas, mostly from Australia and also from Canada, creating a need to increase production for its own people and to balance bilateral trade. Chickpeas are an excellent source of protein, especially when compared to other legume pulses. They are high in unsaturated fatty acids and minerals, including calcium, magnesium, phosphorus and potassium.

Chickpea protein is obtained from chickpeas using different extraction processes based either on the isoelectric pH point, air classification, or on enzymatic treatment and separation.

References

  1. "Cicer arietinum L." The Plant List. 2013. Retrieved 22 October 2014.
  2. Feedipedia. "Chickpea (Cicer arietinum)". www.feedipedia.org. Retrieved 26 February 2018.
  3. Kew Science. "Cicer arietinum L. – Plants of the World Online". Plants of the World Online. Retrieved 26 February 2018.
  4. 1 2 "Baynes, T. S.; Smith, W. R., eds. (1880). "Gram"  . Encyclopædia Britannica . Vol. 11 (9th ed.). New York: Charles Scribner's Sons. pp. 36–37.
  5. 1 2 3 "Cicer arietinum". Germplasm Resources Information Network . Agricultural Research Service, United States Department of Agriculture . Retrieved 21 October 2014.
  6. S, Bell (March 31, 2014). "The small but mighty chickpea". Phys.org. Retrieved 8 October 2015.
  7. Advances in Agronomy. Elsevier. 2001. ISBN   978-0080543994 . Retrieved 26 February 2018 via Google Books.
  8. Lucas, Leilani; Fuller, Dorian Q. (2014), "Chickpea: Origins and Development", in Smith, Claire (ed.), Encyclopedia of Global Archaeology, New York, NY: Springer, pp. 1384–1387, doi:10.1007/978-1-4419-0465-2_2324, ISBN   978-1-4419-0465-2, S2CID   82687381 , retrieved 2023-12-24
  9. 1 2 3 "Chickpea production in 2022, Crops/Regions/World list/Production Quantity (pick lists)". UN Food and Agriculture Organization, Corporate Statistical Database (FAOSTAT). 2024. Retrieved 21 April 2024.
  10. 1 2 3 Dean, Sam (20 September 2012). "The History of the Word Chickpea". bon appétit. Retrieved 28 October 2024.
  11. Nene, Y.L. (2006). "Indian Pulses Through the Millenia". Asian Agri-History. 10 (3): 179–202.
  12. Mikić, Aleksandar; Perić, Vesna (2011). "An Etymological and Lexicological Note On the Words for Some Ancient Eurasian Grain Legume Crops in Turkic Languages". Turkish Journal of Field Crops. 16 (2): 179–182.
  13. 1 2 Mikić, Aleksandar M.; Medović, Aleksandar P.; Ćupina, Branko T.; Mihailović, Vojislav M.; Ignjatović-Ćupina, Aleksandra M.; Ðorđević, Vuk B.; Kobiljski, Borislav Ð. (2011). "Paleolinguistics brings more light on the earliest history of the traditional Eurasian pulse crops". Nature Precedings: 1. doi: 10.1038/npre.2011.5837.1 .
  14. 1 2 3 4 Mikić, Aleksandar (2019). Lexicon of Pulse Crops. Boca Raton, Florida: CRC Press. ISBN   978-1-138-08951-8.
  15. 1 2 3 4 5 Mikić, Aleksandar (2012). "Origin of the Words Denoting Some of the Most Ancient Old World Pulse Crops and Their Diversity in Modern European Languages". PLOS ONE. 7 (9): e44512. Bibcode:2012PLoSO...744512M. doi: 10.1371/journal.pone.0044512 . PMID   22973458.
  16. Balter, Michael (13 February 2015). "Mysterious Indo-European homeland may have been in the steppes of Ukraine and Russia". Science. doi:10.1126/science.aaa7858.
  17. Campbell, Lyle (2020). Historical Linguistics: An Introduction, Fourth Edition. Cambridge, Massachusetts: The MIT Press.
  18. 1 2 3 4 Van Der Maesen, L. J. G. (1987). "Origin, history and taxonomy of chickpea". In Saxena, Mohan C.; Singh, K.B. (eds.). The Chickpea. C.A.B. International. ISBN   9780851985718.
  19. Cohen, Sheldon G. (January–February 1991). "The Chicken, in History and in the Soup". Allergy and Asthma Proceedings. 12 (1): 47–56. doi:10.2500/108854191778879593.
  20. 1 2 Gold, David L. (2009). Studies in Etymology and Etiology: With Emphasis on Germanic, Jewish, Romance and Slavic Languages. Universidad de Alicante. ISBN   978-84-7908-517-9 via Google Books.
  21. 1 2 3 4 5 6 Van Der Maesen, L. J. G. (1972). Cicer L., A Monograph of the Genus, With Special Reference to the Chickpea (Cicer Arietinum L.), Its Ecology and Cultivation. Wageningen: H. Veenman & Zonen N.V.
  22. Ahmad, F.; Gaur, P. M.; Croser, Janine (2005). "Chickpea (Cicer arietinum l.)". In Singh, Ram J.; Jauhar, Prem P. (eds.). Genetic resources, chromosome engineering, and crop improvement-grain legumes 1 (PDF). Boca Raton, Florida: Taylor & Francis. pp. 187–217.
  23. Theophrastus (1916). Enquiry into plants and minor works on odours and weather signs, with an English Translation by Sir Arthur Hort, bart. Vol. II. Translated by Hort, Sir Arthur. London: William Heinemann via Archive.org.
  24. 1 2 3 Lucius Junius Moderatus Columella on Agriculture, in Three Volumes: Res Rustica I-IV, with a Recension of the Text and An English Translation By Harrison Boyd Ash, Ph.D. Cambridge, Massachusetts: Harvard University Press. 1941 via Archive.org.
  25. 1 2 Gupta, Sonal; Nawaz, Kashif; Parween, Sabiha; Roy, Riti; Sahu, Kamlesh; Kumar Pole, Anil; Khandal, Hitaishi; Srivastava, Rishi; Kumar Parida, Swarup; Chattopadhyay, Debasis (2017). "Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement". DNA Research. 24: 1–10. doi:10.1093/dnares/dsw042. PMC   5381347 . PMID   27567261.
  26. "The Strange Origin Story of the Chickpea". Haaretz. Retrieved 2023-12-24.
  27. 1 2 Pearman, Georgina (2005). Prance, Ghillean; Nesbitt, Mark (eds.). The Cultural History of Plants. Routledge. p. 143. ISBN   0415927463.
  28. Zohary, Daniel and Hopf, Maria, Domestication of Plants in the Old World (third edition), Oxford University Press, 2000, p. 110
  29. 1 2 Culpeper, Nicholas. Chick-Pease, or Cicers. Bibliomania, The Complete Herbal (1652, originally titled The English Physitian).
  30. 1 2 "Introduction: Chickpeas". International Center for Agricultural Research in the Dry Areas. Archived from the original on 18 July 2012. Retrieved 28 August 2008.
  31. "Chickpea (Chana)". CRN India. Archived from the original on April 27, 2006. Retrieved 8 June 2016.
  32. "Global research team decodes genome sequence of 90 chickpea lines". International Crops Research Institute for the Semi-Arid Tropics. 2013. Archived from the original on 4 March 2016. Retrieved 9 October 2015.
  33. Varshney, Rajeev K; Song, Chi; Saxena, Rachit K; Azam, Sarwar; Yu, Sheng; Sharpe, Andrew G; Cannon, Steven; Baek, Jongmin; Rosen, Benjamin D (2013-01-27). "Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement" (PDF). Nature Biotechnology. 31 (3): 240–246. doi: 10.1038/nbt.2491 . ISSN   1087-0156. PMID   23354103. S2CID   6649873.
  34. 1 2 "Chickpea (Cicer arietinum)". www.Feedipedia.org. Retrieved 10 May 2019.
  35. Service, Tribune News. "Chana laddoo to be 'Kurukshetra prasadam'". Tribuneindia News Service. Archived from the original on 2023-03-20. Retrieved 2021-08-22.
  36. "Taxonomy and Nomenclature for Family Leguminosae Juss., Cicer arietinum subsp. arietinum". Mansfeld's World Database of Agricultural and Horticultural Crops. Retrieved 31 January 2008.
  37. 1 2 Marks, Gil (2010). Encyclopedia of Jewish Food. John Wiley and Sons. pp. 269–271. ISBN   978-0470391303.
  38. Ferretti, Elena (5 April 2010). "There's Hummus Among Us". Fox News. Retrieved 10 May 2019.
  39. "Chickpeas: A nutrient-packed powerhouse for health and culinary delights". Business Insider. Retrieved 2023-11-24.
  40. Bombay, Team (2020-09-01). "The 5 Most Popular Indian Vegetarian Dishes". Bombay Mahal. Retrieved 2023-11-24.
  41. Amit, Dassana (2022-11-06). "Mirchi Bajji Recipe | Chilli Bajji | Mirapakaya Bajji". Dassana's Veg Recipes. Retrieved 2023-11-24.
  42. Amit, Dassana (2021-10-23). "Besan Ka Halwa". Dassana's Veg Recipes. Retrieved 2023-11-24.
  43. Paster, Emily (19 March 2019). "SUMAC ROASTED CHICK PEAS (ARBES) FOR PURIM". West of the Loop. Retrieved 6 January 2022.
  44. Krule, Miriam (2015-06-10). "Stop Pouring Your Chickpea Liquid Down the Drain. It's a Magical Ingredient". Slate Magazine. Retrieved 2019-06-24.
  45. Gormley, Shannon (7 May 2019). "Little Bean Proves Chickpea Ice Cream Isn't as Weird as It Sounds". Willamette Week. Retrieved 10 May 2019.
  46. 1 2 3 4 5 6 Bampidis, V.A.; Christodoulou, V. (2011). "Chickpeas (Cicer arietinum L.) in animal nutrition: A review". Animal Feed Science and Technology. 168 (1–2): 1–20. doi:10.1016/j.anifeedsci.2011.04.098.
  47. 1 2 United States Food and Drug Administration (2024). "Daily Value on the Nutrition and Supplement Facts Labels". FDA. Archived from the original on 2024-03-27. Retrieved 2024-03-28.
  48. 1 2 National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board; Committee to Review the Dietary Reference Intakes for Sodium and Potassium (2019). "Chapter 4: Potassium: Dietary Reference Intakes for Adequacy". In Oria, Maria; Harrison, Meghan; Stallings, Virginia A. (eds.). Dietary Reference Intakes for Sodium and Potassium. The National Academies Collection: Reports funded by National Institutes of Health. Washington, DC: National Academies Press (US). pp. 120–121. doi:10.17226/25353. ISBN   978-0-309-48834-1. PMID   30844154 . Retrieved 2024-12-05.
  49. Milán-Carrillo J, Valdéz-Alarcón C, Gutiérrez-Dorado R, Cárdenas-Valenzuela OG, Mora-Escobedo R, Garzón-Tiznado JA, Reyes-Moreno C (2007). "Nutritional properties of quality protein maize and chickpea extruded based weaning food". Plant Foods Hum Nutr. 62 (1): 31–7. doi:10.1007/s11130-006-0039-z. PMID   17243010. S2CID   11067470.
  50. "Nutrition facts for Chickpeas (garbanzo beans, bengal gram), mature seeds, cooked, boiled, without salt, 100 g, USDA Nutrient Database, version SR-21". Conde Nast. 2014. Retrieved 15 January 2015.
  51. 1 2 3 4 5 6 7 El-Adawy, T.A. (2002). "Nutritional composition and antinutritional factors of chickpeas (Cicer arietinum L.) undergoing different cooking methods and germination". Plant Foods for Human Nutrition. 57 (1): 83–97. doi:10.1023/A:1013189620528. PMID   11855623. S2CID   23259042.
  52. 1 2 Jukanti AK, Gaur PM, Gowda CL, Chibbar RN (2012). "Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review". Br J Nutr. 108 (Suppl 1): S11–26. doi: 10.1017/S0007114512000797 . PMID   22916806.
  53. Elango, Dinakaran (2022). "Genome-wide association mapping of seed oligosaccharides in chickpea". Frontiers in Plant Science. 13 (2022). doi: 10.3389/fpls.2022.1024543 . PMC   9638045 . PMID   36352859.
  54. 1 2 3 Ibrikci, H.; Knewtson, S.J.B.; Grusak, M.A. (2003). "Chickpea leaves as a vegetable green for humans: evaluation of mineral composition". Journal of the Science of Food and Agriculture. 83 (9): 945–950. Bibcode:2003JSFA...83..945I. doi:10.1002/jsfa.1427.
  55. Faridy JM, Stephanie CM, Gabriela MO, Cristian JM (2020). "Biological Activities of Chickpea in Human Health (Cicer arietinum L.). A Review". Plant Foods for Human Nutrition. 75 (2): 142–153. doi:10.1007/s11130-020-00814-2. PMID   32239331. S2CID   214733079.
  56. Naghavi, M.R.; Jahansouz, M.R. (2005). "Variation in the agronomic and morphological traits of Iranian chickpea accessions". Journal of Integrative Plant Biology. 47 (3): 375–79. doi:10.1111/j.1744-7909.2005.00058.x.
  57. 1 2 3 Bampidis, V.A.; Christodoulou, V. (2011). "Chickpeas (Cicer arietinum L.) in animal nutrition: A review". Animal Feed Science and Technology. 168 (1–2): 1–20. doi:10.1016/j.anifeedsci.2011.04.098.
  58. 1 2 3 Mishra, U.S.; Sirothia, P.; Bhadoria, U.S. (2009). "Effects of phosphorus nutrition on growth and yield of chickpea (Cicer arietinum) under rainfed conditions". International Journal of Agricultural and Statistical Sciences. 5 (1): 85–88.
  59. 1 2 Wery, J., Deschamps, M., & Leger-Cresson, N. (1988). Influence of some agroclimatic factors and agronomic practices on nitrogen nutrition of chickpea (Cicer arietinum L.). Developments in Plants and Soil Sciences, 32: 287–301.
  60. Hinsinger, P (2001). "Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review". Plant and Soil. 237 (2): 173–95. Bibcode:2001PlSoi.237..173H. doi:10.1023/A:1013351617532. S2CID   8562338.
  61. Johnson, S.E., Lauren, J.G., Welch, R.M., & Duxbury, J.M. (2005). A comparison of the effects of micronutrient seed priming and soil fertilization on the mineral nutrition of chickpea (Cicer arietinum), lentil (Lens culinaris), rice (Oryza sativa) and wheat (Triticum acstiyum) in Nepal. [ page needed ]
  62. Datta, J.; Lal, N. (2012). "Application of molecular markers for genetic discrimination of Fusarium wilt pathogen races affecting chickpea and pigeonpea in major regions of India". Cellular and Molecular Biology. 58 (1): 55–65. PMID   23273192.
  63. 1 2 Berka, Miroslav; Kopecká, Romana; Berková; Brzobohatý, Břetislav; Černý, Martin (2022-01-12). Hancock, Robert (ed.). "Regulation of heat shock proteins 70 and their role in plant immunity". Journal of Experimental Botany . 73 (7). Society for Experimental Biology (OUP): 1894–1909. doi:10.1093/jxb/erab549. ISSN   0022-0957. PMC   8982422 . PMID   35022724.
  64. Sheila, J.; Sharma, N. (1996). "A World list of Chickpea and Pigeonpea Pathogens". International Crops Research Institute for Semi-Arid Tropics, ICRISAT (5).
  65. "PlantVillage". Archived from the original on 2015-06-30. Retrieved 2015-07-11.
  66. Pfaff, T; Kahl, G (2003). "Mapping of gene-specific markers on the genetic map of chickpea ("Cicer atietinum"L)". Molecular Genetics and Genomics. 269 (2): 243–251. doi:10.1007/s00438-003-0828-0. PMID   12756536. S2CID   20347418.
  67. Millan, Teresa; Heather, J.Clarke; Kadambot, H.M.Siddique; et al. (2006). "Chickpea molecular breeding:New tools and concepts" (PDF). Euphytica. 147 (1–2): 81–103. doi:10.1007/s10681-006-4261-4. S2CID   26048653.