S3 ViRGE

Last updated
S3 logo, of pre-VIA times S3 logo.png
S3 logo, of pre-VIA times

The S3 ViRGE (Video and Rendering Graphics Engine [1] ) graphics chipset was one of the first 2D/3D accelerators designed for the mass market.

Contents

Introduced in 1996 by then graphics powerhouse S3, Inc., the ViRGE was S3's first foray into 3D-graphics. The S3/Virge was the successor to the successful Trio64V+. ViRGE/325 was pin compatible with the Trio64 chip, retaining the DRAM-framebuffer interface (up to 4MB), and clocking both the core and memory up to 80 MHz. In Windows, Virge was benchmarked as the fastest DRAM-based accelerator of the era. The VRAM-based version, ViRGE/VX, was actually slower in lower resolutions, but had a faster RAMDAC to support high-resolution modes not available on the 325. [2]

Support

Part of S3's marketing plan for the ViRGE included the "S3D" standard, stating that members of the ViRGE family carried the S3D Graphics Engine. Games that supported ViRGE directly put this logo on their box so owners of the 3D card would know that it would run as well as possible on their computer. And, despite its lackluster 3D-speed, the ViRGE did receive some S3D enhanced games, due in large part to the brand prestige S3 carried in this period. Some examples of the ViRGE-enhanced versions were: Terminal Velocity , Descent II , Monster Truck Madness , Tomb Raider, MechWarrior 2 , FX Fighter Turbo , Terracide , POD , Incoming , and Jedi Knight .

Performance

Diamond's Stealth3D 2000 with ViRGE/325 DIAMONDSTEALTH3D2000-top.JPG
Diamond's Stealth3D 2000 with ViRGE/325

With the successful launch of the Sony PlayStation home game-console, pressure was on the PC market to incorporate hardware that could compete in the area of realtime 3D graphics rendering, something that software-based host-CPU rendering could not do well on its own. That is, main-CPU software-based rendering could render realtime 3D graphicsas demonstrated by games like Descent , which used only the main CPU and standard VGA hardware to render full-screen 3D video with 6-degrees-of-freedom motion in real timebut the resolution, polygon count, and quality of shading, smoothing, etc. were not competitive with dedicated 3D rendering hardware. While the market demand was clearly present, realtime 3D graphics rendering was new and unfamiliar territory for S3 and many of its hardware competitors. With a sizable chunk of ViRGE's hardware real-estate already devoted to other key functions (such as the VGA-controller, 2D/BITBLT engine, RAMDAC, PCI and memory interface), and the need to serve traditional 2D applications, the resulting 3D functionality was both limited and slow.

When performing basic 3D-rendering with only texture mapping and no other advanced features, ViRGE's pixel throughput was somewhat faster than the best software-optimized (host-based CPU) 3D-rendering of the era, and with better (16bpp) color fidelity. But when additional rendering operations were added to the polygon load (such as perspective-correction, Z-depth fogging, and bilinear filtering), rendering throughput dropped to the speed of software-based rendering on an entry-level CPU. 3D-rendering on the high-end VRAM based ViRGE/VX (988) was even slower than the less expensive ViRGE/325, due to the VX's slower core and memory clock rates. The upgraded ViRGE/DX and ViRGE/GX models did improve 3D rendering performance, [2] but by the time of their introduction they were still unable to distinguish the ViRGE family in an already crowded 3D market.

Outside of 3D rendering, ViRGE was a solid performer in familiar tasks as DOS VGA and Microsoft Windows. Here, S3's substantial experience in high-performance Windows acceleration showed, with ViRGE benchmarking near the top among competing DRAM-based VGA cards. In OEM PC markets, ViRGE sold well as a direct replacement to S3's highly successful Trio/64 family. The ViRGE family delivered faster Windows acceleration in the same physical footprint as its predecessor.

The introduction of competing hardware, 3dfx's Voodoo Graphics and Rendition's Verité, and game titles such as Id Software's popular Quake engine, resulted in an industry-wide shakeout. S3, along with other previously well-established VGA vendors in the PC market, were unable to adapt to the rapidly evolving PC 3D graphics market, being relegated to sell into market segments where 3D graphics functionality was unimportant. Although the ViRGE sold well in the OEM market, poor Direct3D performance and lack of OpenGL support prevented the ViRGE from competing in the more lucrative 3D graphics segment.

Variants

Between its birth in 1995 and retirement near the year 2000, the ViRGE family received regular upgrades. The ViRGE/DX boosted the performance of the original ViRGE/325 by improving perspective correction and implementing a full-speed trilinear filter. The ViRGE/GX added support for more modern SD/SGRAM. The ViRGE/GX2 was one of the first VGA chipsets to support AGP, although the level of support extended little beyond electrical compliance. Substantial use of AGP's feature-set would have to wait until the Savage 3D.

The ViRGE was ultimately replaced by the Savage 3D in S3's top-end graphics segment in 1998, which lacks support for the S3D API. However, at least one derivative (Trio3D) of the ViRGE remained in production even after the discontinuation of the Savage 3D.

Specifications

Related Research Articles

<span class="mw-page-title-main">Graphics card</span> Expansion card which generates a feed of output images to a display device

A graphics card is a computer expansion card that generates a feed of graphics output to a display device such as a monitor. Graphics cards are sometimes called discrete or dedicated graphics cards to emphasize their distinction to an integrated graphics processor on the motherboard or the central processing unit (CPU). A graphics processing unit (GPU) that performs the necessary computations is the main component in a graphics card, but the acronym "GPU" is sometimes also used to erroneously refer to the graphics card as a whole.

<span class="mw-page-title-main">3dfx</span> American computer hardware company

3dfx Interactive, Inc. was an American computer hardware company headquartered in San Jose, California, founded in 1994, that specialized in the manufacturing of 3D graphics processing units, and later, video cards. It was a pioneer in the field from the late 1990s to 2000.

<span class="mw-page-title-main">Graphics processing unit</span> Specialized electronic circuit; graphics accelerator

A graphics processing unit (GPU) is a specialized electronic circuit initially designed to accelerate computer graphics and image processing. After their initial design, GPUs were found to be useful for non-graphic calculations involving embarrassingly parallel problems due to their parallel structure. Other non-graphical uses include the training of neural networks and cryptocurrency mining.

<span class="mw-page-title-main">RIVA 128</span> Graphics Chip by Nvidia

The RIVA 128, or "NV3", was a consumer graphics processing unit created in 1997 by Nvidia. It was the first to integrate 3D acceleration in addition to traditional 2D and video acceleration. Its name is an acronym for Real-time Interactive Video and Animation accelerator.

<span class="mw-page-title-main">S3 Graphics</span> U.S.-based computer graphics company

S3 Graphics, Ltd. was an American computer graphics company. The company sold the Trio, ViRGE, Savage, and Chrome series of graphics processors. Struggling against competition from 3dfx Interactive, ATI and Nvidia, it merged with hardware manufacturer Diamond Multimedia in 1999. The resulting company renamed itself to SONICblue Incorporated, and, two years later, the graphics portion was spun off into a new joint effort with VIA Technologies. The new company focused on the mobile graphics market. VIA Technologies' stake in S3 Graphics was purchased by HTC in 2011.

<span class="mw-page-title-main">Number Nine Visual Technology</span>

Number Nine Visual Technology Corporation was a manufacturer of video graphics chips and cards from 1982 to 1999. Number Nine developed the first 128-bit graphics processor, as well as the first 256-color (8-bit) and 16.8 million color (24-bit) cards.

<span class="mw-page-title-main">NV1</span> 1995 computer graphics card

The Nvidia NV1, manufactured by SGS-Thomson Microelectronics under the model name STG2000, was a multimedia PCI card announced in May 1995 and released in November 1995. It was sold to retail by Diamond as the Diamond Edge 3D.

Cirrus Logic Inc. is an American fabless semiconductor supplier that specializes in analog, mixed-signal, and audio DSP integrated circuits (ICs). Since 1998, the company's headquarters have been in Austin, Texas.

<span class="mw-page-title-main">S3 Savage</span> Line of PC graphics chipsets by S3

Savage was a product-line of PC graphics chipsets designed by S3.

<span class="mw-page-title-main">Diamond Multimedia</span> American company

Diamond Multimedia is an American company that specializes in many forms of multimedia technology. They have produced graphics cards, motherboards, modems, sound cards and MP3 players; however, the company began with the production of the TrackStar, a PC add-on card which emulated Apple II computers. They were one of the major players in the 2D and early 3D graphics card competition throughout the 1990s and early 2000s.

<span class="mw-page-title-main">Oak Technology</span> American semiconductor company

Oak Technology (OAKT) was an American supplier of semiconductor chips for sound cards, graphics cards and optical storage devices such as CD-ROM, CD-RW and DVD. It achieved success with optical storage chips and its stock price increased substantially around the time of the tech bubble in 2000. After falling on hard times, in 2003 it was acquired by Zoran Corporation.

<span class="mw-page-title-main">Intel740</span> Intel graphics processing unit

The Intel740, or i740, is a 350 nm graphics processing unit using an AGP interface released by Intel on February 12, 1998. Intel was hoping to use the i740 to popularize the Accelerated Graphics Port, while most graphics vendors were still using PCI. Released to enormous fanfare, the i740 proved to have disappointing real-world performance, and sank from view after only a few months on the market. Some of its technology lived on in the form of Intel Extreme Graphics, and the concept of an Intel produced graphics processor lives on in the form of Intel Graphics Technology and Intel Arc.

<span class="mw-page-title-main">Rendition, Inc.</span>

Rendition, Inc., was a maker of 3D computer graphics chipsets in the mid to late 1990s. They were known for products such as the Vérité 1000 and Vérité 2x00 and for being one of the first 3D chipset makers to directly work with Quake developer John Carmack to make a hardware-accelerated version of the game (vQuake). Rendition's major competitor at the time was 3Dfx. Their proprietary rendering APIs were Speedy3D and RRedline.

<span class="mw-page-title-main">Video display controller</span> Type of integrated circuit

A video display controller (VDC), also called a display engine or display interface, is an integrated circuit which is the main component in a video-signal generator, a device responsible for the production of a TV video signal in a computing or game system. Some VDCs also generate an audio signal, but that is not their main function. VDCs were used in the home computers of the 1980s and also in some early video picture systems.

<span class="mw-page-title-main">Voodoo3</span> Series of gaming video cards

Voodoo3 was a series of computer gaming video cards manufactured and designed by 3dfx Interactive. It was the successor to the company's high-end Voodoo2 line and was based heavily upon the older Voodoo Banshee product. Voodoo3 was announced at COMDEX '98 and arrived on store shelves in early 1999. The Voodoo3 line was the first product manufactured by the combined STB Systems and 3dfx.

<span class="mw-page-title-main">Matrox G200</span> GPU designed by Matrox

The G200 is a 2D, 3D, and video accelerator chip for personal computers designed by Matrox. It was released in 1998.

<span class="mw-page-title-main">S3 Trio</span> Computer graphics hardware

The S3 Trio range were popular video cards for personal computers and were S3's first fully integrated graphics accelerators. As the name implies, three previously separate components were now included in the same ASIC: the graphics core, RAMDAC and clock generator. The increased integration allowed a graphics card to be simpler than before and thus cheaper to produce.

<span class="mw-page-title-main">Matrox Mystique</span>

The Mystique and Mystique 220 were 2D, 3D, and video accelerator cards for personal computers designed by Matrox, using the VGA connector. The original Mystique was introduced in 1996, with the slightly upgraded Mystique 220 having been released in 1997.

The ATI Mach line was a series of 2D graphics accelerators for personal computers developed by ATI Technologies. It became an extension to the ATI Wonder series of cards. The first chip in the series was the ATI Mach8. It was essentially a clone of the IBM 8514/A with a few notable extensions such as Crystal fonts. Being one of the first graphics accelerator chips on the market, the Mach8 did not have an integrated VGA core. In order to use the first Mach8 coprocessor cards, a separate VGA card was required. This increased the cost of ownership as one had to purchase two rather than one expansion card for graphics. A temporary solution was presented with the ATI Graphics Ultra/Vantage cards, which combined an ATI 8514 Ultra and VGA Wonder+ into a single card. The Mach32 chip was the follow-up to the Mach8, which finally featured an integrated VGA core, true colour support and a 64-bit datapath to internal memory.

<span class="mw-page-title-main">Voodoo2</span> Series of Graphics Cards

The Voodoo2 is a set of three specialized 3D graphics chips on a single chipset setup, made by 3dfx. It was released in February 1998 as a replacement for the original Voodoo Graphics chipset. The card runs at a chipset clock rate of 90 MHz and uses 100 MHz EDO DRAM, and is available for the PCI interface. The Voodoo2 comes in two models, one with 8 MB RAM and one with 12 MB RAM. The 8 MB card has 2 MB of memory per texture mapping unit (TMU) vs. 4 MB on the 12 MB model. The 4 MB framebuffer on both cards support a maximum screen resolution of 800 × 600, while the increased texture memory on the 12 MB card allows more detailed textures. Some boards with 8 MB can be upgraded to 12 MB with an additional daughter board.

References

  1. S3 ViRGE on S3 Official website
  2. 1 2 "PC Goes 3D". Next Generation . No. 26. Imagine Media. February 1997. p. 57.
  3. S3 ViRGE 325 Register Documentation