Sarcophaga bullata

Last updated

Sarcophaga bullata
Sarcophaga bullata.jpg
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Subgenus:
Species:
S. bullata
Binomial name
Sarcophaga bullata
(Parker, 1916)
Synonyms
  • Sarcophaga bison Aldrich, 1916
  • Neobellieria bullataParker, 1916

Sarcophaga bullata, or the grey flesh fly, is a species of fly belonging to the family Sarcophagidae. It varies in size from small to large, 8 to 17 millimeters in length and is very similar in appearance and behavior to a closely related species, Sarcophaga haemorrhoidalis . S. bullata is a common scavenger species in the Eastern United States, but is found throughout the Nearctic region. Identification down to the species level in the family Sarcophagidae is notably difficult and relies primarily on the male genitalia. [1] [2] [3] Though limited information is available regarding S. bullata, it has gained increasing recognition in the field of forensic entomology as a forensically relevant fly species, as it may be among the first species to colonize human remains. In these instances, recovered maggots may be analyzed for post-mortem interval (PMI) estimations, which may be used as evidence in courts of law. [4] Current studies regarding S. bullata have revealed a maternal effect operating in these flies that prevents pupal diapause under certain environmental conditions, which is an important factor to be considered during forensic analyses. [5]

Contents

Taxonomy

Classification of the species has also proved difficult, as it has for much of the family Sarcophagidae. C.H. Curran, for instance, included Sarcophagidae in a larger family, Metopidae, that added some Muscidae and some Tachinidae. Most, however, consider S. bullata to be a member of the subfamily Sarcophaginae within Sarcophagidae. Within the genus Sarcophaga, the species is included by some in the subgenus Neobellieria . [6] [7]

Morphology

Sarcophaga bullata is approximately 8 to 17 millimeters in length. The head is colored ashen grey, and the arista (hair) of the antenna is plumose (feather-like) only at the base, unlike a Calliphorid fly, whose arista is plumose the entire length. [1] The eyes of S. bullata are bright red in color, and are rather widely separated on the top of the head. On the genae, or cheeks, are long bristly hairs. Two orbital bristles are present on the females, while the orbital bristles are absent on the males.

Thorax

Present on the thorax are three contrasting black and grey longitudinal stripes; these stripes do not continue onto the abdomen. Sarcophaga have 4, rather than the normal 2 or 3, notopleural bristles, and 3 sternopleural bristles. [8] A prominent row of black bristles (setae) can be found on each side of the thorax, just above the base of the hind leg and just under the base of the wing. These two sets of bristles are what differentiate Sarcophagidae from Muscidae. S. bullata lacks the postscutellum, the large swelling underneath the scutellum of the thorax, which distinguishes the flesh fly from Tachinid. [8] S. bullata have black legs, translucent wings, and do not have a costal spine.

Abdomen

The abdomen is grey and slender, with a median black stripe. It is checkered with a shifting pattern and black reflecting spots. [9] Sarcophaga most resemble the blow fly, but never have metallic colored abdomens. There are no bristles on the middle tibia of the fly, but the hind tibia has fringed or long hairs irregularly placed. [10] The genitalia is located on the end of the abdomen and in the males is a bright red color. The genitalia is one of the main identification characteristics used to identify the different genera of Sarcophagidae.

Development

The life cycle of Sarcophaga bullata is characterized by holometabolous development, though, like all known sarcophagids, the species is larviparous, meaning that the egg develops internally and females then give birth to first-instar larvae. This must be accounted for when using the species in forensic work to calculate a post-mortem interval.

Eggs

Though not much has been written specifically on the reproductive cycle of S. bullata, Sarcophagids are thought to be consistent within the family when it comes to life cycle. The eggs themselves are about 0.5 to 3.5 millimeters in length and 0.12 to 0.8 millimeters in width, though hatching occurs within the uterus just before the deposition of larvae.

Larva

Sarcophagidae larvae are white or pale yellow, cylindrical, and tapered anteriorly. All segments beyond the first have anterior and posterior bands of hairs. The mandibles are usually strong and curved, resembling a hook. Posterior spiracles are sunken in, which is a characteristic that can be used to distinguish between flesh fly and blow fly larvae. Larvae are most often found in decaying animal matter. [3]

First instar:
First instar Sarcophagidae larvae are 0.5 to 5.0 millimeters long. The Sarcophaginae larvae, specifically, usually lack a labral sclerite, but in some cases it is present as a small, triangular plate located between the mandibles. The first segment is at times sclerotized on the dorsal surface, which can form a partial head capsule. The Sarcophaginae have a hypopharyngeal sclerite that is sometimes fused with the large tentoropharyngeal sclerite. They also lack an anterior spiracle, while the posterior spiracle usually consists of two lobes; rarely it may be bispinose.

Second instar:
Second instar larvae of the family Sarcophagidae are 4.0 to 10.0 millimeters long and closely resemble the third instar with the exception being that the posterior spiracle has only two openings.

Third instar:
Third instar larvae are 9.5 to 20 millimeters long. The mandibles are by now large and strongly curved. The dorsal cornu of the tentorpharyngeal sclerite appears incised due to a narrow apical window. The anterior spiracle is present with a short stalk that branches into several nodes, resembling a fan. The posterior spiracles now consist of three vertical slits within a sunken oval cavity. This cavity is surrounded by 8 to 12 tubercles, of which the dorsal ones are often sclerotized and have toothed processes, while the ventral tubercles are often covered in nipple-like projections. The anal opening is located in a fairly prominent posteroventral lobe that also has lateral tubercles. [11]

Distribution

Sarcophaga bullata do not have wide natural distribution, and can only be found in the Nearctic region, or the part of North America that is north of Mexico. [3] It is most common in the eastern and southern United States, but can be found from the western coast of the United States to Canada. S. bullata are commonly found in rural and urban environments, and it is commonly found in houses and indoor dwellings, especially during the summer months. [3] The flies prefer the warmer months, and are active from May to September, with the majority of the activity in August and September. [12]

Feeding habits

Adults of the family Sarcophagidae do not feed exclusively on carrion, despite the weighty implications of the name "flesh flies;" in fact, adult flies are frequently discovered feeding on sweet substances, such as sap and flower nectar. The flesh-eating character of the family refers primarily to sarcophagid maggots, which feed predominantly on carrion, exposed meat, and excrement. [3] Sarcophaga bullata, in addition to all species of the family Sarcophagidae, may be considered "specialized flies," a term coined by Baker and Baker to describe flies that feed on carrion and dung. [2] [13] Specialized flies have been proven capable of detecting and selectively favoring plant nectars with high amino acid concentrations. Extensive research has suggested that S. bullata females in particular favor amino acid-containing nectars as opposed to strictly sugary nectars, perhaps to secure healthy levels of protein for successful reproduction. [14]

Adult flesh flies are attracted to animal remains in both early and late decomposition stages, and have been known to fly through even the most extreme weather conditions to reach carrion. Though adult flies of the family Calliphoridae typically arrive on human remains before those of Sarcophagidae, sarcophagid adults are unhindered by nearly all climatic conditions and may reach the carrion first during particularly stormy weather. [3] Rather than laying eggs, S. bullata females retain fertilized eggs internally until they develop into first-instar larvae, which are then deposited directly onto carrion. As sarcophagid larvae are larger than those of most other colonizing flies, they often present significant larval competition for other species. [15] Though sarcophagid larvae have been attributed to causing myiasis, a condition in which maggots feed on the tissue of a living human or animal, they are most commonly discovered feeding on animal remains. In the southeastern United States, species of the genus Sarcophaga are the principal flies found during the warm summer months on bodies located indoors, as females frequently enter dwellings to deposit its larvae. [4]

In terms of relevance to decomposing tissue analysis, forensic entomologists must disregard an egg development time period in post-mortem interval (PMI) calculations, as S. bullata and other sarcophagids deposit live larvae on carrion as opposed to eggs. For the same reason, fly egg masses discovered on human remains can be automatically ruled-out as belonging to sarcophagid flies. [4]

Social behavior

It is difficult to quantify the level and nature of "communication" that takes place among sarcophagid adults, though much is known about the role of pheromones in their reproductive physiologies. [14] An experiment by Girard et al. in the 1970s demonstrated that S. bullata males release the sex pheromone hexanal, which was shown to attract over 65% of the females tested from over long distances. [16] In studies regarding the social behavior of adult female sarcophagids larvipositing on animal remains, it has been suggested that adult females prefer to aggregate with other carrion flies and larviposit on carcasses that already have larvae present. A possible explanation for this selective preference is that an increased number of larvae results in a greater concentration of larval enzymatic secretions on the carrion, aiding in digestion. Sarcophagid larvae are also known to outcompete the larvae of other species and cause their extinction, and occasionally consume the smaller larvae present on animal remains. [15]

Natural predators

S. bullata has few, if any, specific natural predators due to their dispersal throughout the North American continent. Predators of S. bullata are carnivores, ranging from mammals and reptiles to carnivorous plants. However, a few primary predators are the Stagmomantis californica or the California Mantis, Catopsis berteroniana,Sceloporus undulatus or Eastern Fence Lizard, and the Perimyotis subflavus (Eastern Pipistrelle).

As members of Sarcophaga bullata are found from coast to coast in the United States and in parts of Canada, these flesh flies have been the focus of many forensically related studies. Most of these studies deal with the immature stages, as maggots are a helpful tool in the forensic world for determining post-mortem interval estimations. One such study concerning S. bullata determined that when evaluating a post-mortem interval, temperature plays a major role in maturation of the maggots and the decomposition of the surrounding tissue. This is an important consideration for forensic entomologists, as the ambient temperature at the crime scene before and during the colonization of human remains by arthropods must be accounted for to ensure that post-mortem interval estimations are accurate. [17]

Another important consideration with the grey flesh flies concerns maggot mass temperature. "Maggot mass" refers to a large group of maggots clustered together at a particular location on a carcass. Reporting an accurate temperature is critical to properly calculating accumulated degree hours in the estimation of a post-mortem interval. Accumulated degree hours and similar measures are determined to attempt to trace back the "age" of the maggots and determine the time of exposure of decaying tissue. Some scientists claim that maggot mass temperature is generally significantly above ambient air temperature. Others maintain that while maggot mass temperature may be elevated in a laboratory setting, in the field the maggots self-regulate their temperature by moving in and out of the feeding mass. [18] Obviously, more research is needed to determine the general effects of maggot mass temperature.

Other work has been reported concerning tanning in S. bullata with the age pigment lipofuscin. Lipofuscin accumulation in larvae is a linear function of time. Some of the pigment is disposed of at the pupal stage and then linear accumulation resumes in adults. Many projects have focused on an assay of this pigment as it could hold a rather accurate technique for aging S. bullata and other forensically important insects. [19]

Temperature data

To estimate insect age, forensic entomologists must determine the amount of time a particular insect spends in each stage of development and apply this information to temperature data at a crime scene to determine a post-mortem interval estimation. Timing of various insect stages is determined in a laboratory at standardized temperatures so that ranges may be applied to the different temperature conditions encountered in the field. Post-mortem intervals are estimated by determining the accumulated degree days (ADD) or accumulated degree hours (ADH) acquired by each insect stage on the remains; this information is then used to calculate the overall degree days or degree hours accumulated during the insect's entire life cycle and association with the carcass, representing the minimal amount of time the body has been available for colonization by insects. This estimation does not claim to represent an accurate time of death, but rather a minimal time of colonization. This is an important distinction that must be considered with the use of forensic evidence in courts of law. [20]

Accumulated degree days can be determined by subtracting the minimum threshold from the average ambient temperature over a 24-hour period and multiplying the difference by the corresponding number of days. Accumulated degree hours, which are equally useful, are similarly determined by subtracting the minimum threshold from the ambient temperature over a 1-hour period and multiplying the difference by the corresponding number of hours. The term "minimum threshold" refers to the lowest temperature at which an insect species will develop; any temperatures below this threshold will result in delayed development and probable death of the insect in question. [20]

It is important to note that similar calculations may be carried out to determine "accumulated degree minutes," "accumulated degree seconds," etc., though ADD and ADH are typically used in forensic analyses.

For S. bullata, the following temperature data has been determined in a laboratory setting. These calculations correspond to a standardized temperature of 27 °C. [20]

StageTime Spent in Stage (27 °C)
Egg---
1st Instar Larvae26 hrs
2nd Instar Larvae18 hrs
3rd Instar Larvae54 hrs
Prepupae112 hrs
Pupae12 days
Total17 days

Other research

Another study was conducted concerning an effect by the mothers of the flesh fly population. There is a maternal effect that operates in S. bullata that can prevent pupal diapause when reared under short day conditions. It was determined that certain environmental stressors or chemical treatments on the mother, such as extreme temperature shocks, food deprivation and reducing maternal size, were ineffective in altering the diapause-suppressant. However, there were several chemical agents that proved effective. Gamma-aminobutyric acid, octopamine and pilocarpine all countered the maternal affect and permitted the expression of diapause in the flesh fly progeny. The ability to express diapause is an important consideration for forensic entomologists as diapause allows the pupae to become metabolically "dormant" until environmental conditions improve; this would significantly affect pupal time estimations and subsequent post-mortem interval estimations. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Forensic entomology</span> Application of insect and other arthropod biology to forensics

Forensic entomology is the scientific study of the colonization of a dead body by arthropods. This includes the study of insect types commonly associated with cadavers, their respective life cycles, their ecological presences in a given environment, as well as the changes in insect assemblage with the progression of decomposition. Insect succession patterns are identified based on the time a given species of insect spends in a given developmental stage, and how many generations have been produced since the insects introduction to a given food source. Insect development alongside environmental data such as temperature and vapor density, can be used to estimate the time since death, due to the fact that flying insects are attracted to a body immediately after death. The identification of postmortem interval to aid in death investigations is the primary scope of this scientific field. However, forensic entomology is not limited to homicides, it has also been used in cases of neglect and abuse, in toxicology contexts to detect the presence of drugs, and in dry shelf food contamination incidents. Equally, insect assemblages present on a body, can be used to approximate a given location, as certain insects may be unique to certain areas. Therefore, forensic entomology can be divided into three subfields: urban, stored-product and medico-legal/medico-criminal entomology.

<span class="mw-page-title-main">Silphidae</span> Family of beetles

Silphidae is a family of beetles that are known commonly as large carrion beetles, carrion beetles or burying beetles. There are two subfamilies: Silphinae and Nicrophorinae. Nicrophorines are sometimes known as sexton beetles. The number of species is relatively small at around two hundred. They are more diverse in the temperate region although a few tropical endemics are known. Both subfamilies feed on decaying organic matter such as dead animals. The subfamilies differ in which uses parental care and which types of carcasses they prefer. Silphidae are considered to be of importance to forensic entomologists because when they are found on a decaying body they are used to help estimate a post-mortem interval.

<span class="mw-page-title-main">Flesh fly</span> Family of insects

Sarcophagidae are a family of flies commonly known as flesh flies. They differ from most flies in that they are ovoviviparous, opportunistically depositing hatched or hatching maggots instead of eggs on carrion, dung, decaying material, or open wounds of mammals, hence their common name. Some flesh fly larvae are internal parasites of other insects such as Orthoptera, and some, in particular the Miltogramminae, are kleptoparasites of solitary Hymenoptera. The adults mostly feed on fluids from animal bodies, nectar, sweet foods, fluids from animal waste and other organic substances. Juveniles need protein to develop and may be laid on carrion, dung or sweet plant foods.

<span class="mw-page-title-main">Common green bottle fly</span> Species of insect

The common green bottle fly is a blowfly found in most areas of the world and is the most well-known of the numerous green bottle fly species. Its body is 10–14 mm (0.39–0.55 in) in length – slightly larger than a house fly – and has brilliant, metallic, blue-green or golden coloration with black markings. It has short, sparse, black bristles (setae) and three cross-grooves on the thorax. The wings are clear with light brown veins, and the legs and antennae are black. The larvae of the fly may be used for maggot therapy, are commonly used in forensic entomology, and can be the cause of myiasis in livestock and pets. The common green bottle fly emerges in the spring for mating.

<i>Chrysomya rufifacies</i> Species of fly

Chrysomya rufifacies is a species belonging to the blow fly family, Calliphoridae, and is most significant in the field of forensic entomology due to its use in establishing or altering post mortem intervals. The common name for the species is the hairy maggot blow fly, and it belongs to the genus Chrysomya, which is commonly referred to as the Old World screwworms. This genus includes other species such as Chrysomya putoria and Chrysomya bezziana, which are agents of myiasis. C. rufifacies prefers very warm weather and has a relatively short lifecycle. It is widely distributed geographically and prefers to colonize large carcasses over small ones. The species commonly has a greenish metallic appearance and is important medically, economically, and forensically.

Forensic entomological decomposition is how insects decompose and what that means for timing and information in criminal investigations. Medicolegal entomology is a branch of forensic entomology that applies the study of insects to criminal investigations, and is commonly used in death investigations for estimating the post-mortem interval (PMI). One method of obtaining this estimate uses the time and pattern of arthropod colonization. This method will provide an estimation of the period of insect activity, which may or may not correlate exactly with the time of death. While insect successional data may not provide as accurate an estimate during the early stages of decomposition as developmental data, it is applicable for later decompositional stages and can be accurate for periods up to a few years.

<i>Lucilia illustris</i> Species of insect

Lucilia illustris is a member of the fly family Calliphoridae, commonly known as a blow fly. Along with several other species, L. illustris is commonly referred to as a green bottle fly. Lucilia illustris is typically 6–9 mm in length and has a metallic blue-green thorax. The larvae develop in three instars, each with unique developmental properties. The adult fly typically will feed on flowers, but the females need some sort of carrion protein in order to breed and lay eggs.

<i>Calliphora vicina</i> Species of insect

Calliphora vicina is a member of the family Calliphoridae, which includes blow flies and bottle flies. These flies are important in the field of forensic entomology, being used to estimate the time of a person's death when a corpse is found and then examined. C. vicina is currently one of the most entomologically important fly species for this purpose because it arrives at and colonizes a body following death in consistent timeframes.

In forensic entomology, entomotoxicology is the analysis of toxins in arthropods that feed on carrion. Using arthropods in a corpse or at a crime scene, investigators can determine whether toxins were present in a body at the time of death. This technique is a major advance in forensics; previously, such determinations were impossible in the case of severely decomposed bodies devoid of intoxicated tissue and bodily fluids. Ongoing research into the effects of toxins on arthropod development has also allowed better estimations of postmortem intervals.

<i>Sarcophaga pernix</i> Species of fly

Sarcophaga pernix, also known as the red-tailed flesh fly, is a fly in the Sarcophagidae family. This fly often breeds in carrion and feces, making it a possible vector for disease. The larvae of this species can cause myiasis, as well as accidental myiasis. It is potentially useful in forensic entomology.

Compsomyiops callipes, previously known as Paraluclia wheeleri, is a member of the blowfly family Calliphoridae. It is a warm weather fly that can be found in southwestern parts of the United States and parts of South America. This species can be identified by its chaetotaxy, metallic blue color, club-shaped palp, and brown calypters.

<i>Cynomya cadaverina</i> Species of fly

Cynomya cadaverina, also known as the shiny blue bottle fly, is a member of the family Calliphoridae, which includes blow flies as well as bottle flies. In recent years, this family has become a forensically important facet in many medicocriminal investigations in the growing field of forensic entomology. C. cadaverina is specifically important in determining a post-mortem interval, as well as other important factors.

<i>Synthesiomyia nudiseta</i> Species of fly

Synthesiomyia nudiseta is one of the largest flies in the family Muscidae. The fly has a pair of forewings; the paired hind wings have been reduced to halteres that help with stability and movement during flight. Key characteristics of this species include plumose segmented aristae, well-developed calypters, and sternopleural bristles. Synthesiomyia nudiseta is a forensically important species because it is necrophilous and can therefore help determine the time of colonization for the post mortem interval with its known life cycle.

<i>Lucilia mexicana</i> Species of insect

Lucilia mexicana is a species of blow fly of the family Calliphoridae, one of many species known as a green bottle fly. Its habitat range extends from southwestern North America to Brazil. L. mexicana is typically 6–9 mm in length with metallic blue-green coloring. This species is very similar in appearance to L. coeruleiviridis, the primary difference being that L. mexicana has two or more complete rows of post-ocular setae. L. mexicana has the potential to be forensically important in the stored-products and medicocriminal fields, but more research is needed for the fly to be used as evidence in criminal investigations.

<i>Calliphora livida</i> Species of fly

Calliphora livida is a member of the family Calliphoridae, the blow flies. This large family includes the genus Calliphora, the "blue bottle flies". This genus is important in the field of forensic entomology because of its value in post-mortem interval estimation.

<i>Lucilia coeruleiviridis</i> Species of fly

Lucilia coeruleiviridis, formerly Phaenecia coeruleiviridis, is commonly known as a green bottle fly, because of its metallic blue-green thorax and abdomen. L. coeruleiviridis was first discovered by French entomologist Pierre-Justin-Marie Macquart in 1855. It belongs to the family Calliphoridae and is one of many forensically important Diptera, as it is often found on decaying substances. L. coeruleiviridis is one of the most ubiquitous blow fly species in the southeastern United States, particularly in the spring and fall months.

<i>Protophormia terraenovae</i> Species of fly

Protophormia terraenovae is commonly called northern blowfly, blue-bottle fly or blue-assed fly. It is distinguished by its deep blue coloration and large size and is an important species throughout the Northern Hemisphere. This fly is notable for its economic effect as a myiasis pest of livestock and its antibiotic benefits in maggot therapy. Also of interest is P. terraenovae’s importance in forensic investigations: because of their temperature-dependent development and their prominent presence on corpses, the larvae of this species are useful in minimum post-mortem interval (mPMI) determination.

Calliphora latifrons is a species of blue bottle fly.

Sarcophaga peregrina is a species of flesh fly belonging to the family Sarcophagidae. They easily breed, multiply and spread in human habitation, from garbage, faeces and livestock manures. In many regions, they are health concerns as they are active vectors of infectious diseases such as myiasis in humans. Due to their close contact with human activities, they are considered as forensically important insects. They can be used for molecular analysis of the time of postmortem intervals. They are also occasionally parasitic in other invertebrates. They produce a group of antibacterial peptide called sarcotoxins. The first of such protein, sarcotoxin 1A, was determined in 1983 by Masayuki Okada and Shunji Natori at the University of Tokyo, Japan.

<span class="mw-page-title-main">Sarcophaga barbata</span> Fly species

Sarcophaga barbata is a species from the genus Sarcophaga and the family of flesh fly, Sarcophagidae. It is most closely related to S. plinthopyga, S. securifera, and S. bullata of the same genus. The species was first discovered by Eugene Thomson in 1868. S. barbata has also been found in the Middle East near carcasses, where the larvae can thrive. S. barbata is also a prominent organism in scientific research and has been used to study L-3-glycerophosphate oxidation and location within the mitochondria.

References

  1. 1 2 Aldrich, J.M. (1916). Sarcophaga and Allies in North America. Murphey-Bivins Co. Press. pp.  233–235. ISBN   1-115-40881-X.
  2. 1 2 Baker, H.G. & Baker, I. (1973). "Amino-acids in nectar and their evolutionary significance". Nature . 241 (5391): 543–545. Bibcode:1973Natur.241..543B. doi:10.1038/241543b0. ISSN   0028-0836. S2CID   4298075.
  3. 1 2 3 4 5 6 Byrd, Jason H. & Castner, James L. (2001). Forensic Entomology: The Utility of Arthropods in Legal Investigations . New York: CRC Press LLC. pp.  233–235. ISBN   0-8493-8120-7.
  4. 1 2 3 Byrd, Jason H. & Castner, James L. (2001). Forensic Entomology: The Utility of Arthropods in Legal Investigations . New York: CRC Press LLC. ISBN   0-8493-8120-7.
  5. 1 2 Denlinger, David & Webb, Mei-Ling (July 2002). "GABA and Picrotoxin Alter Expression of a Maternal Effect That Influences Pupal Diapause in the Flesh Fly, Sarcophaga Bullata". Physiological Entomology. London: Royal Entomological Society of London. 23 (2): 184–191. doi:10.1046/j.1365-3032.1998.232073.x. S2CID   86199395.
  6. Curran, C.H. (1934). The Families and Genera of North American Diptera. The Ballou Press. pp. 402–403.
  7. Pape, Thomas (1987). The Sarcophagidae (Diptera) of Fennoscandia and Denmark. Leiden: E.J. Brill/Scandinavian Science Press Ltd. p. 19. ISBN   90-04-08184-4.
  8. 1 2 "Flesh Fly – Family Sarcophagidae" . Retrieved 6 March 2009.
  9. Kgware, M. "Public Health Vectors and Pests: Flesh Fly" . Retrieved 6 March 2009.
  10. "Green Valley Pest Control: Flesh Fly" . Retrieved 6 March 2009.
  11. Shewell, G.E. (1987). Manual of Nearctic Diptera – Sarcophagidae. Vol. 2. Research Branch, Agriculture Canada. pp. 1160–1161. ISBN   0-660-12125-5.
  12. Chen, Cheng-Ping; Denlinger, David L.; Lee, Richard E. (July 1990). "Seasonal variation in generation time, diapauses and cold hardiness in a central Ohio population of the flesh fly, Neobellieria bullata". Ecological Entomology. Royal Entomological Society of London. 16 (2): 155–162. doi:10.1111/j.1365-2311.1991.tb00204.x. ISSN   0307-6946. S2CID   85056476.
  13. Baker, H.G. & Baker, I. (1983). B. Bentley & T. Elias (eds.). A brief historical review of the chemistry of floral nectar. New York: Columbia University Press. pp. 126–152.
  14. 1 2 Rathman, Eric S.; Lanza, Janet & Wilson, Jeffrey (October 1990). "Feeding preferences of flesh flies (Sarcophagabullata) for sugar-only vs. sugar-amino acid nectars". American Midland Naturalist. University of Notre Dame. 124 (2): 379–389. doi:10.2307/2426188. JSTOR   2426188.
  15. 1 2 Ives, Anthony R. (March 1991). "Aggregation and coexistence in a carrion fly community". Ecological Monographs. 61 (1): 75–94. doi:10.2307/1943000. JSTOR   1943000.
  16. Gerard, J.E.; Germino, F.J.; Budris, J.P.; Vita, R.A. & Garrity, M.P. (January 1979). "Pheromone of the male flesh fly, Neobellieria bullata". Journal of Chemical Ecology. Netherlands: Springer. 5: 125–130. doi:10.1007/BF00987693. ISSN   0098-0331. S2CID   39036593.
  17. Henry, Amber (April 2002). "Forensic entomology. (Junior Division) The Free Library" . Retrieved 6 March 2009.
  18. Koch, Emily (April 2003). "Controversy in Forensic Entomology and Crime Scene Investigation: The Question That Is Bugging Forensic Entomologists" (PDF). California: California State Science Fair. Retrieved 5 March 2009.
  19. Ettershank, G; Macdonnell, I & Croft, R (1983). "The Accumulation of Age Pigment by the Fleshfly, Sarcophaga Bullata Parker (Diptera: Sarcophagidae)". Australian Journal of Zoology . Australia: CSIRO Publishing. 31 (2): 131–138. doi:10.1071/ZO9830131. ISSN   0004-959X.
  20. 1 2 3 Brundage, Adrienne (2009). "Temperature," lecture notes distributed in the topic ENTO-431 Forensic Entomology, Texas A&M University, College Station on 6 April.