Scandinavian hunter-gatherer

Last updated

Genetic ancestry of hunter-gatherers in Europe between 14 ka and 9 ka, with the main area of Scandinavian hunter-gatherers (SHG) in yellow. Individual numbers correspond to calibrated sample dates. Genetic ancestry of hunter-gatherers dated between 14 ka and 9 ka (SHG).png
Genetic ancestry of hunter-gatherers in Europe between 14 ka and 9 ka, with the main area of Scandinavian hunter-gatherers (SHG) in yellow. Individual numbers correspond to calibrated sample dates.

In archaeogenetics, the term Scandinavian hunter-gatherer (SHG) is the name given to a distinct ancestral component that represents descent from Mesolithic hunter-gatherers of Scandinavia. [lower-alpha 1] [3] [4] Genetic studies suggest that the SHGs were a mix of western hunter-gatherers (WHGs) initially populating Scandinavia from the south during the Holocene, and eastern hunter-gatherers (EHGs), who later entered Scandinavia from the north along the Norwegian coast. During the Neolithic, they admixed further with Early European Farmers (EEFs) and Western Steppe Herders (WSHs). Genetic continuity has been detected between the SHGs and members of the Pitted Ware culture (PWC), and to a certain degree, between SHGs and modern northern Europeans. [lower-alpha 2] The Sámi, on the other hand, have been found to be completely unrelated to the PWC. [lower-alpha 3]

Contents

Research

Scandinavian hunter-gatherers (SHG) were identified as a distinct ancestral component by Lazaridis et al. (2014). A number of remains examined at Motala, Sweden, and a separate group of remains from 5,000 year-old hunter-gatherers of the Pitted Ware culture (PWC), were identified as belonging to SHG. The study found that an SHG individual from Motala ('Motala12') could be successfully modelled as being of c. 81% western hunter-gatherer (WHG) ancestry, and c. 19% Ancient North Eurasian (ANE) ancestry. [7]

Haak et al. (2015) examined the remains of six SHGs buried at Motala between ca. 6000 BC and 5700 BC. Of the four males surveyed, three carried the paternal haplogroup I2a1 or various subclades of it, while the other carried I2c. With regard to mtDNA, four individuals carried subclades of U5a, while two carried U2e1. The study found SHGs to constitute one of the three main hunter-gatherer populations of Europe during the Mesolithic. [lower-alpha 4] [lower-alpha 5] The two other groups were WHGs and eastern hunter-gatherers (EHG). EHGs were found to be an ANE-derived population with significant admixture from a WHG-like source. SHGs formed a distinct cluster between WHG and EHG, and the admixture model proposed by Lazaridis et al. could be successfully replaced with a model that takes EHG as source population for the ANE-like ancestry, with an admixture ratio of ~65% (WHG) : ~35% (EHG). [9] SHGs living between 6000 BC and 3000 BC were found to largely be genetically homogeneous, with little admixture occurring among them during this period. EHGs were found to be more closely related to SHGs than WHGs. [8]

Mesolithic European samples with estimates of genetic ancestry for SHG. Mesolithic European samples with estimates of genetic ancestry for SHG.png
Mesolithic European samples with estimates of genetic ancestry for SHG.

Mathieson et al. (2015) subjected the six SHGs from Motala to further analysis. SHGs appeared to have persisted in Scandinavia until after 5,000 years ago. The Motala SHGs were found to be closely related to WHGs. [10]

Lazaridis et al. (2016) confirmed SHGs to be a mix of EHGs (~43%) and WHGs (~57%). WHGs were modeled as descendants of the Upper Paleolithic people (Cro-Magnon) of the Grotte du Bichon in Switzerland with minor additional EHG admixture (~7%). EHGs derived c. 75% of their ancestry from ANEs. [lower-alpha 6]

Günther et al. (2018) examined the remains of seven SHGs. All three samples of Y-DNA extracted belonged to subclades of I2. With respects to mtDNA, four samples belonged to U5a1 haplotypes, while three samples belonged U4a2 haplotypes. All samples from western and northern Scandinavia carried U5a1 haplotypes, while all the samples from eastern Scandinavia except from one carried U4a2 haplotypes. The authors of the study suggested that SHGs were descended from a WHG population that had entered Scandinavia from the south, and an EHG population which had entered Scandinavia from the northeast along the coast. The WHGs who entered Scandinavia are believed to have belonged to the Ahrensburg culture. These WHGs and EHGs had subsequently mixed, and the SHGs gradually developed their distinct character. The SHGs from western and northern Scandinavia had more EHG ancestry (c. 49%) than individuals from eastern Scandinavia (c. 38%). The SHGs were found to have a genetic adaptation to high latitude environments, including high frequencies of low pigmentation variants and genes designed for adaptation to the cold and physical performance. SHGs displayed a high frequency of the depigmentation alleles SLC45A2 and SLC24A5, and the OCA/Herc2, which affects eye pigmentation. These genes were much less common among WHGs and EHGs. A surprising continuity was displayed between SHGs and modern populations of Northern Europe in certain respects. Most notably, the presence of the protein TMEM131 among SHGs and modern Northern Europeans was detected. This protein may be involved in long-term adaptation to the cold. [5]

Genetic proximity among Mesolithic European samples (PCA). Genetic proximity among Mesolithic European samples (PCA).png
Genetic proximity among Mesolithic European samples (PCA).

In a genetic study published in Nature Communications in January 2018, the remains of an SHG female at Motala, Sweden between 5750 BC and 5650 BC was analyzed. She was found to be carrying U5a2d and "substantial ANE ancestry". The study found that Mesolithic hunter-gatherers of the eastern Baltic also carried high frequencies of the HERC2 allele, and increased frequencies of the SLC45A2 and SLC24A5 alleles. They however harbored less EHG ancestry than SHGs. Genetic continuity between the SHGs and the Pitted Ware culture of the Neolithic was detected. The results further underpinned previous suggestion that SHGs were descended from northward migration of WHGs and a subsequent southward migration of EHGs. [12] A certain degree of continuity between SHGs and northern Europeans was detected. [lower-alpha 2]

A study published in Nature in February 2018 included an analysis of a large number of individuals of prehistoric Eastern Europe. Thirty-seven samples were collected from Mesolithic and Neolithic Ukraine (9500–6000 BC). These were determined to be an intermediate between EHG and SHG. Samples of Y-DNA extracted from these individuals belonged exclusively to R haplotypes (particularly subclades of R1b1 and R1a)) and I haplotypes (particularly subclades of I2). mtDNA belonged almost exclusively to U (particularly subclades of U5 and U4). [13]

Physical appearance

Reconstruction of a circa 7,000 BP Scandinavian hunter-gatherer by Oscar Nilsson, Trelleborgs Museum. Southwest Sweden hunter-gatherer Burial XXII (5000 BCE, reconstruction, Trelleborg Museum).jpg
Reconstruction of a circa 7,000 BP Scandinavian hunter-gatherer by Oscar Nilsson, Trelleborgs Museum.

According to Mathieson et al. (2015), 50% of Scandinavian Hunter Gatherers from Motala carried the derived variant of EDAR-V370A. This variant is typical of modern East Asian populations, and is known to affect dental morphology [16] and hair texture, and also chin protrusion and ear morphology, [17] as well as other facial features. [18] The authors did not detect East Asian ancestry in the Scandinavian Hunter Gatherers, and speculated that this gene might not have originated in East Asia, as is commonly believed. [19] However, more recent research incorporating ancient Northeast Asian samples has confirmed that EDAR-V370A originated in Northeast Asia, and spread to West Eurasian populations such as Motala in the Holocene period. [20] Mathieson et al. (2015) also reported: "A second surprise is that, unlike closely related western hunter-gatherers, the Motala samples have predominantly derived pigmentation alleles at SLC45A2 and SLC24A5." [19]

The study by Günther et al. (2018) further discovered that SHGs "show a combination of eye color varying from blue to light brown and light skin pigmentation. This is strikingly different from the WHGs—who have been suggested to have the specific combination of blue eyes and dark skin and EHGs—who have been suggested to be brown-eyed and light-skinned".

Four SHGs from the study yielded diverse eye and hair pigmentation predictions: one individual (SF12) was predicted to be most likely to have had dark hair and blue eyes; a second individual (Hum2) most likely had dark hair and brown eyes; a third (SF9) was predicted to have had light hair and brown eyes; and a fourth individual (SBj) was predicted to have had light hair, with the most likely hair colour being blonde, and blue eyes.

Of the SHGs from Motala, four were probably dark-haired, and two others were probably light-haired, and may have been blond. In addition, all of the six SHGs from Motala had high probabilities of being blue-eyed.

Residual genetic ancestry of European hunter-gatherers during the European Neolithic, between 7.5 ka and 5 ka BP (c. 5,500~3,000 BC) Residual genetic ancestry of European hunter-gatherers during the Neolithic, between 7.5 ka and 5 ka BP.png
Residual genetic ancestry of European hunter-gatherers during the European Neolithic, between 7.5 ka and 5 ka BP (c.5,500~3,000 BC)

Both light and dark skin pigmentation alleles are found at intermediate frequencies in the Scandinavian Hunter Gatherers sampled, but only one individual had exclusively light-skin variants of two different SNPs.

The study found that depigmentation variants of genes for light skin pigmentation (SLC24A5, SLC45A2) and blue eye pigmentation (OCA2/HERC2) are found at high frequency in SHGs relative to WHGs and EHGs, which the study suggests cannot be explained simply as a result of the admixture of WHGs and EHGs. The study argues that these allele frequencies must have continued to increase in SHGs after admixture, which was probably caused by environmental adaptation to high latitudes. [21]

On the basis of archaeological and genetic evidence, the Swedish archaeologist Oscar D. Nilsson has made forensic reconstructions of both male and female SHGs. [22] [23] [24]

See also

Notes

  1. "Earlier aDNA studies suggest the presence of three genetic groups in early postglacial Europe: Western hunter–gatherers (WHG), Eastern hunter–gatherers (EHG), and Scandinavian hunter–gatherers (SHG)4. The SHG have been modelled as a mixture of WHG and EHG." [2]
  2. 1 2 "Modern-day northern Europeans trace limited amounts of genetic material back to the SHGs." [5]
  3. "Population continuity between the PWC and modern Saami can be rejected under all assumed ancestral population size combinations." [6]
  4. "We can discern three different groups of hunter-gatherers who lived in Europe before the arrival of the first farmers: western European hunter-gatherers (WHG) in Spain, Luxembourg, and Hungary; eastern European hunter-gatherers (EHG) in Russia, and Scandinavian huntergatherers (SHG) in Sweden." [8]
  5. "[T]he three main groups of Holocene hunter-gatherers (WHG, EHG, SHG)." [8]
  6. Eastern Hunter Gatherers (EHG) derive 3/4 of their ancestry from the ANE […] Scandinavian hunter-gatherers (SHG) are a mix of EHG and WHG; and WHG are a mix of EHG and the Upper Paleolithic Bichon from Switzerland. [11]

Related Research Articles

<span class="mw-page-title-main">Balts</span> Group of peoples in northern Europe

The Balts or Baltic peoples are a group of peoples inhabiting the eastern coast of the Baltic Sea who speak Baltic languages. Among the Baltic peoples are modern-day Lithuanians and Latvians — all East Balts — as well as the Old Prussians, Curonians, Sudovians, Skalvians, Yotvingians and Galindians — the West Balts — whose languages and cultures are now extinct.

<span class="mw-page-title-main">Funnelbeaker culture</span> North-central European culture around 4300–2800 BCE

The Funnel(-neck-)beaker culture, in short TRB or TBK, was an archaeological culture in north-central Europe. It developed as a technological merger of local neolithic and mesolithic techno-complexes between the lower Elbe and middle Vistula rivers. These predecessors were the (Danubian) Lengyel-influenced Stroke-ornamented ware culture (STK) groups/Late Lengyel and Baden-Boleráz in the southeast, Rössen groups in the southwest and the Ertebølle-Ellerbek groups in the north. The TRB introduced farming and husbandry as major food sources to the pottery-using hunter-gatherers north of this line.

<span class="mw-page-title-main">Yamnaya culture</span> Archaeological culture from the Pontic steppe

The Yamnaya culture or the Yamna culture, also known as the Pit Grave culture or Ochre Grave culture, is a late Copper Age to early Bronze Age archaeological culture of the region between the Southern Bug, Dniester, and Ural rivers, dating to 3300–2600 BCE. It was discovered by Vasily Gorodtsov following his archaeological excavations near the Donets River in 1901–1903. Its name derives from its characteristic burial tradition: Я́мная is a Russian adjective that means 'related to pits ', as these people used to bury their dead in tumuli (kurgans) containing simple pit chambers. Research in recent years has found that Mikhaylovka, in lower Dnieper river, Ukraine, formed the Core Yamnaya culture.

<span class="mw-page-title-main">Sredny Stog culture</span> Archaeological culture in Eastern Europe

The Sredny Stog culture or Serednii Stih culture is a pre-Kurgan archaeological culture from the 5th–4th millennia BC. It is named after the Dnieper river islet of today's Serednii Stih, Ukraine, where it was first located.

<span class="mw-page-title-main">Khvalynsk culture</span> Archaeological culture

The Khvalynsk culture is a Middle Copper Age Eneolithic culture of the middle Volga region. It takes its name from Khvalynsk in Saratov Oblast. The Khvalynsk culture is found from the Samara Bend in the north to the North Caucasus in the south, from the Sea of Azov in the west to the Ural River in the east. It was preceded by the Early Eneolithic Samara culture.

<span class="mw-page-title-main">Pitted Ware culture</span> Archaeological culture

The Pitted Ware culture was a hunter-gatherer culture in southern Scandinavia, mainly along the coasts of Svealand, Götaland, Åland, north-eastern Denmark and southern Norway. Despite its Mesolithic economy, it is by convention classed as Neolithic, since it falls within the period in which farming reached Scandinavia. The Pitted Ware people were largely maritime hunters, and were engaged in lively trade with both the agricultural communities of the Scandinavian interior and other hunter-gatherers of the Baltic Sea.

The Narva culture or eastern Baltic was a European Neolithic archaeological culture in present-day Estonia, Latvia, Lithuania, Kaliningrad Oblast, and adjacent portions of Poland, Belarus and Russia. A successor of the Mesolithic Kunda culture, the Narva culture continued up to the start of the Bronze Age. The culture spanned from c. 5300 to 1750 BC. The technology was that of hunter-gatherers. The culture was named after the Narva River in Estonia.

<span class="mw-page-title-main">Genetic history of Europe</span>

The genetic history of Europe includes information around the formation, ethnogenesis, and other DNA-specific information about populations indigenous, or living in Europe.

The Kunda culture, which originated from the Swiderian culture, comprised Mesolithic hunter-gatherer communities of the Baltic forest zone extending eastwards through Latvia into northern Russia, dating to the period 8500–5000 BC according to calibrated radiocarbon dating. It is named after the Estonian town of Kunda, about 110 kilometres (70 mi) east of Tallinn along the Gulf of Finland, near where the first extensively studied settlement was discovered on Lammasmäe Hill and in the surrounding peat bog. The oldest known settlement of the Kunda culture in Estonia is Pulli. The Kunda culture was succeeded by the Narva culture, who used pottery and showed some traces of food production.

<span class="mw-page-title-main">Light skin</span> Human skin color

Light skin is a human skin color that has a low level of eumelanin pigmentation as an adaptation to environments of low UV radiation. Due to migrations of people in recent centuries, light-skinned populations today are found all over the world. Light skin is most commonly found amongst the native populations of Europe, East Asia, West Asia, Central Asia, Siberia, and North Africa as measured through skin reflectance. People with light skin pigmentation are often referred to as "white" although these usages can be ambiguous in some countries where they are used to refer specifically to certain ethnic groups or populations.

<span class="mw-page-title-main">Haplogroup R1b</span> Type of paternal lineage

Haplogroup R1b (R-M343), previously known as Hg1 and Eu18, is a human Y-chromosome haplogroup.

<span class="mw-page-title-main">Afontova Gora</span> Complex of archaeological sites in Siberia

Afontova Gora is a Late Upper Paleolithic and Mesolithic Siberian complex of archaeological sites located on the left bank of the Yenisey River near the city of Krasnoyarsk, Russia. Afontova Gora has cultural and genetic links to the people from Mal'ta–Buret'. The complex was first excavated in 1884 by Ivan Savenkov.

<span class="mw-page-title-main">Ancient North Eurasian</span> Archaeogenetic name for an ancestral genetic component

In archaeogenetics, the term Ancient North Eurasian (ANE) is the name given to an ancestral component that represents the lineage of the people of the Mal'ta–Buret' culture and populations closely related to them, such as the Upper Paleolithic individuals from Afontova Gora in Siberia. Genetic studies also revealed that the ANE are closely related to the remains of the preceding Yana Culture, which were dubbed as 'Ancient North Siberians' (ANS). The Ancient North Eurasians represent a Paleolithic Siberian population having arrived via the "northern route" and being deeply related to Paleolithic and Mesolithic European hunter-gatherers, but also derive a significant amount of their ancestry from an East Eurasian source, having arrived to Siberia via the "southern route".

Early European Farmers (EEF) were a group of the Anatolian Neolithic Farmers (ANF) who brought agriculture to Europe and Northwest Africa. The Anatolian Neolithic Farmers were an ancestral component, first identified in farmers from Anatolia (also known as Asia Minor) in the Neolithic, and outside in Europe and Northwest Africa, they also existed in Iranian Plateau, South Caucasus, Mesopotamia and Levant. Although the spread of agriculture from the Middle East to Europe has long been recognised through archaeology, it is only recent advances in archaeogenetics that have confirmed that this spread was strongly correlated with a migration of these farmers, and was not just a cultural exchange.

<span class="mw-page-title-main">Western hunter-gatherer</span> Archaeogenetic name for an ancestral genetic component

In archaeogenetics, western hunter-gatherer is a distinct ancestral component of modern Europeans, representing descent from a population of Mesolithic hunter-gatherers who scattered over western, southern and central Europe, from the British Isles in the west to the Carpathians in the east, following the retreat of the ice sheet of the Last Glacial Maximum. It is closely associated and sometimes considered synonymous with the concept of the Villabruna cluster, named after Ripari Villabruna cave in Italy, known from the terminal Pleistocene of Europe, which is largely ancestral to later WHG populations.

<span class="mw-page-title-main">Caucasus hunter-gatherer</span> Anatomically modern human genetic lineage identified in 2015

Caucasus hunter-gatherer (CHG), also called Satsurblia cluster, is an anatomically modern human genetic lineage, first identified in a 2015 study, based on the population genetics of several modern Western Eurasian populations.

<span class="mw-page-title-main">Eastern hunter-gatherer</span> Archaeogenetic name for an ancestral genetic component

In archaeogenetics, eastern hunter-gatherer (EHG), sometimes east European hunter-gatherer or eastern European hunter-gatherer, is a distinct ancestral component that represents Mesolithic hunter-gatherers of Eastern Europe.

Basal Eurasian is a proposed lineage of anatomically modern humans with reduced, or zero, archaic hominin (Neanderthal) admixture compared to other ancient non-Africans. Basal Eurasians represent a sister lineage to other Eurasians and may have originated from the Southern Middle East, specifically the Arabian peninsula, or North Africa, and are said to have contributed ancestry to various West Eurasian, South Asian, and Central Asian as well as African groups. This Basal Eurasian component is also proposed to explain the lower archaic admixture among modern West Eurasians compared to with East Eurasians, although alternatives without the need of such Basal admixture exist as well.

<span class="mw-page-title-main">Western Steppe Herders</span> Archaeogenetic name for an ancestral genetic component

In archaeogenetics, the term Western Steppe Herders (WSH), or Western Steppe Pastoralists, is the name given to a distinct ancestral component first identified in individuals from the Chalcolithic steppe around the turn of the 5th millennium BC, subsequently detected in several genetically similar or directly related ancient populations including the Khvalynsk, Repin, Sredny Stog, and Yamnaya cultures, and found in substantial levels in contemporary European, Central Asian, South Asian and West Asian populations. This ancestry is often referred to as Yamnaya ancestry, Yamnaya-related ancestry, Steppe ancestry or Steppe-related ancestry.

<span class="mw-page-title-main">Yuzhny Oleny</span>

Yuzhny Oleny, also Yuzhniy Oleniy, is an archaeological site located on Yuzhny Oleny island, in Lake Onega, Karelia.

References

  1. Posth, Cosimo; Yu, He; Ghalichi, Ayshin (March 2023). "Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers". Nature. 615 (7950): 117–126. Bibcode:2023Natur.615..117P. doi:10.1038/s41586-023-05726-0. hdl: 10256/23099 . ISSN   1476-4687. PMC   9977688 . PMID   36859578.
  2. Kashuba 2019.
  3. Eisenmann 2018.
  4. Manninen, Mikael A.; Damlien, Hege; Kleppe, Jan Ingolf; Knutsson, Kjel; Murashkin, Anton; Niemi, Anja R.; Rosenvinge, Carine S.; Persson, Per (April 2021). "First encounters in the north: cultural diversity and gene flow in Early Mesolithic Scandinavia". Antiquity. 95 (380): 310–328. doi: 10.15184/aqy.2020.252 . hdl: 10037/21829 . ISSN   0003-598X.
  5. 1 2 3 4 Günther et al. 2018.
  6. Malmström 2009.
  7. Lazaridis 2014.
  8. 1 2 3 Haak 2015.
  9. Haak 2015, p. 107, Supplementary Information.
  10. Mathieson 2015.
  11. Lazaridis 2016.
  12. Mittnik 2018.
  13. Mathieson 2018.
  14. "This 7,000-year-old woman was among Sweden's last hunter-gatherers". National Geographic Magazine. 11 November 2019. Archived from the original on 3 September 2022.
  15. "Trelleborgs Museum exhibit". www.trelleborg.se (in Swedish). 1 April 2022.
  16. Kataoka, Keiichi; Fujita, Hironori; Isa, Mutsumi; Gotoh, Shimpei; Arasaki, Akira; Ishida, Hajime; Kimura, Ryosuke (4 March 2021). "The human EDAR 370V/A polymorphism affects tooth root morphology potentially through the modification of a reaction–diffusion system". Scientific Reports. 11 (1): 5143. Bibcode:2021NatSR..11.5143K. doi:10.1038/s41598-021-84653-4. ISSN   2045-2322. PMC   7933414 . PMID   33664401.
  17. Adhikari, Kaustubh; Fuentes-Guajardo, Macarena; Quinto-Sánchez; Mendoza-Revilla; Camilo Chacón-Duque (2016). "A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation". Nature Communications. 7 (1): 11616. Bibcode:2016NatCo...711616A. doi:10.1038/ncomms11616. ISSN   2041-1723. PMC   4874031 . PMID   27193062.
  18. Wang, Chuan-Chao; Yeh, Hui-Yuan; Popov, Alexander N.; Zhang, Hu-Qin; Matsumura, Hirofumi; Sirak, Kendra; Cheronet, Olivia; Kovalev, Alexey; Rohland, Nadin; Kim, Alexander M.; Mallick, Swapan; Bernardos, Rebecca; Tumen, Dashtseveg; Zhao, Jing; Liu, Yi-Chang; Liu, Jiun-Yu; Mah, Matthew; Wang, Ke; Zhang, Zhao; Adamski, Nicole; Broomandkhoshbacht, Nasreen; Callan, Kimberly; Candilio, Francesca; Carlson, Kellie Sara Duffett; Culleton, Brendan J.; Eccles, Laurie; Freilich, Suzanne; Keating, Denise; Lawson, Ann Marie; Mandl, Kirsten; Michel, Megan; Oppenheimer, Jonas; Özdoğan, Kadir Toykan; Stewardson, Kristin; Wen, Shaoqing; Yan, Shi; Zalzala, Fatma; Chuang, Richard; Huang, Ching-Jung; Looh, Hana; Shiung, Chung-Ching; Nikitin, Yuri G.; Tabarev, Andrei V.; Tishkin, Alexey A.; Lin, Song; Sun, Zhou-Yong; Wu, Xiao-Ming; Yang, Tie-Lin; Hu, Xi; Chen, Liang; Du, Hua; Bayarsaikhan, Jamsranjav; Mijiddorj, Enkhbayar; Erdenebaatar, Diimaajav; Iderkhangai, Tumur-Ochir; Myagmar, Erdene; Kanzawa-Kiriyama, Hideaki; Nishino, Masato; Shinoda, Ken-ichi; Shubina, Olga A.; Guo, Jianxin; Cai, Wangwei; Deng, Qiongying; Kang, Longli; Li, Dawei; Li, Dongna; Lin, Rong; Shrestha, Rukesh; Wang, Ling-Xiang; Wei, Lanhai; Xie, Guangmao; Yao, Hongbing; Zhang, Manfei; He, Guanglin; Yang, Xiaomin; Hu, Rong; Robbeets, Martine; Schiffels, Stephan; Kennett, Douglas J.; Jin, Li; Li, Hui; Krause, Johannes; Pinhasi, Ron; Reich, David (March 2021). "Genomic insights into the formation of human populations in East Asia". Nature. 591 (7850): 413–419. Bibcode:2021Natur.591..413W. doi:10.1038/s41586-021-03336-2. ISSN   1476-4687. PMC   7993749 . PMID   33618348.
  19. 1 2 Mathieson 2015 : "In three out of six samples, we observe the haplotype carrying the derived allele of rs3827760 in the EDAR gene (Extended Data Fig. 5), which affects tooth morphology and hair thickness33,34, has been the subject of a selective sweep in East Asia35, and today is at high frequency in East Asians and Native Americans. The EDAR derived allele is largely absent in present-day Europe except in Scandinavia, plausibly due to Siberian movements into the region millennia after the date of the Motala samples. The SHG have no evidence of East Asian ancestry4,7, suggesting that the EDAR derived allele may not have originated not in East Asians as previously suggested"
  20. Zhang, Xiaoming; Ji, Xueping; Li, Chunmei; Yang, Tingyu; Huang, Jiahui; Zhao, Yinhui; Wu, Yun; Ma, Shiwu; Pang, Yuhong; Huang, Yanyi; He, Yaoxi; Su, Bing (25 July 2022). "A Late Pleistocene human genome from Southwest China". Current Biology. 32 (14): 3095–3109.e5. Bibcode:2022CBio...32E3095Z. doi: 10.1016/j.cub.2022.06.016 . ISSN   0960-9822. PMID   35839766. S2CID   250502011. See Figure 5, page 8. "EDAR-V370A emerged the earliest in Amur-19K, Amur-14.5K, and UKY (13.9 kya) in northern East Asia and in the LosRieles (12.0 kya) samples from coastal Chile of South America (E). It was quickly elevated to extremely high frequency in broad East Asia (89.41%) and America (93.33%) during the Early Holocene (F). EDAR-V370A slightly expanded to West Eurasia, and it also appeared at a relatively low frequency in some Central American populations, likely due to the known admixture with Africans and Europeans 500 years ago during the Late Holocene (G). Likewise, the appearance of EDAR-V370A in Oceanians reflects the historic Austronesian dispersal from East Asia to the Pacific Islands about 2,000 years ago (G)."
  21. Günther et al. (2018) : "Interestingly, all individuals exhibited high probabilities of being blue-eyed (0.71-0.92). The Motala2, Motala3, Motala4 and Motala12 individuals most likely had a dark hair color (0.70-0.99), while Motala1 and Motala6 had a light shaded hair (~0.91); they may have been blond (~0.60). Similar to SF9, SF11, SF12, SBj, Hum1, Hum2 and Steigen, the Motala hunter-gatherers presented a combination of light and dark skin pigmentation alleles. Only Motala2 presented exclusively light-skin variants at both rs16891982 and rs1426654." & "Interestingly, the eye and light skin pigmentation phenotypes observed in all SHGs could potentially be explained by admixture between WHG and EHG groups. The high relative-frequency of the blue-eye color allele in SHGs, resembles WHG, while the intermediate frequencies of the skin color determining SNPs in SHGs seem more likely to have come from EHG, since both light-pigmented alleles are virtually absent from WHG. However, for all three well-characterized skin and eye-color associated SNPs, the SHGs display a frequency that is greater for the light-skin variants and the blue-eye variant than can be expected from a mixture of WHGs and EHGs. This observation indicates that the frequencies may have increased due to continued adaptation to a low light conditions."
  22. Romey 2019.
  23. Romey 2020.
  24. Nilsson 2020, The Tybrind girl.

Bibliography

Further reading