Early European Farmers

Last updated

Early European Farmers (EEF) [a] were a group of the Anatolian Neolithic Farmers (ANF) who brought agriculture to Europe and Northwest Africa. The Anatolian Neolithic Farmers were an ancestral component, first identified in farmers from Anatolia (also known as Asia Minor) in the Neolithic, and outside in Europe and Northwest Africa, they also existed in Iranian Plateau, South Caucasus, Mesopotamia and Levant. Although the spread of agriculture from the Middle East to Europe has long been recognised through archaeology, it is only recent advances in archaeogenetics that have confirmed that this spread was strongly correlated with a migration of these farmers, and was not just a cultural exchange.

Contents

The earliest farmers in Anatolia derived most (80–90%) of their ancestry from the region's local hunter-gatherers, with minor Levantine and Caucasus-related ancestry. [1] The Early European Farmers moved into Europe from Anatolia through Southeast Europe from around 7,000 BC, gradually spread north and westwards, and reached Northwest Africa via the Iberian Peninsula. Genetic studies have confirmed that the later Farmers of Europe generally have also a minor contribution from Western Hunter-Gatherers (WHGs), with significant regional variation. European farmer and hunter-gatherer populations coexisted and traded in some locales, although evidence suggests that the relationship was not always peaceful. Over the course of the next 4,000 years or so, Europe was transformed into agricultural communities, with WHGs being effectively replaced across Europe. During the Chalcolithic and early Bronze Age, people who had Western Steppe Herder (WSH) ancestry moved into Europe and mingled with the EEF population; these WSH, originating from the Yamnaya culture of the Pontic steppe of Eastern Europe, probably spoke Indo-European languages. EEF ancestry is common in modern European and Northwest African populations, with EEF ancestry highest in Southern Europeans, especially Sardinians and Basque people.

A distinct group of the Anatolian Neolithic Farmers spread into the east of Anatolia, and left a considerable genetic legacy in Iranian Plateau, South Caucasus, Levant (during the Pre-Pottery Neolithic B) and Mesopotamia. They also have a minor role in the ethnogenesis of WSHs of Yamnaya culture.

The ANF ancestry is found in substantial levels in contemporary European, West Asian and North African populations, and also found in Central and South Asian populations (through Bactria–Margiana Archaeological Complex and Corded Ware Culture) with lower levels.

Overview

Spread of farming from Southwest Asia to Europe and Northwest Africa, between 9600 and 4000 BC Expansion of farming in western Eurasia, 9600-4000 BCE.png
Spread of farming from Southwest Asia to Europe and Northwest Africa, between 9600 and 4000 BC

Populations of the Anatolian Neolithic derived most of their ancestry from the Anatolian hunter-gatherers (AHG), with a minor geneflow from Iranian/Caucasus and Levantine related sources, suggesting that agriculture was adopted in situ by these hunter-gatherers and not spread by demic diffusion into the region. [1] Ancestors of AHGs and EEFs are believed to have split off from Western Hunter-Gatherers (WHGs) between 45kya to 26kya during the Last Glacial Maximum, and to have split from Caucasus Hunter-Gatherers (CHGs) between 25kya to 14kya. [2]

Genetic studies demonstrate that the introduction of farming to Europe in the 7th millennium BC was associated with a mass migration of people from Northwest Anatolia to Southeast Europe, [3] which resulted in the replacement of almost all (c. 98%) of the local Balkan hunter-gatherer gene pool with ancestry from Anatolian farmers. [4] [5] [6] In the Balkans, the EEFs appear to have divided into two wings, who expanded further west into Europe along the Danube (Linear Pottery culture) or the western Mediterranean (Cardial Ware). Large parts of Northern Europe and Eastern Europe nevertheless remained unsettled by EEFs. During the Middle Neolithic there was a largely male-driven resurgence of WHG ancestry among many EEF-derived communities, leading to increasing frequencies of the hunter-gatherer paternal haplogroups among them.

Around 7,500 years ago, EEFs originating from the Iberian Peninsula migrated into Northwest Africa, bringing farming to the region. They were a key component in the neolithization process of the Maghreb, and intermixed with the local forager communities. [7]

The builders of Stonehenge were descendants of Neolithic farmers who migrated to the area about 6,000 years ago Stonehenge2007 07 30.jpg
The builders of Stonehenge were descendants of Neolithic farmers who migrated to the area about 6,000 years ago

The farmers of the Neolithic British Isles had entered the region through a mass migration c. 4,000 BC. They carried about 80% EEF and 20% WHG ancestry and were found to be closely related to Neolithic peoples of Iberia, which implies that they were descended from agriculturalists who had moved westwards from the Balkans along the Mediterranean coast. The arrival of farming populations led to the almost complete replacement of the native WHGs of the British Isles, who did not experience a genetic resurgence in the succeeding centuries. [8] More than 90% of Britain's Neolithic gene pool was replaced with the arrival of the Bell Beaker people around 2,500 BC, [9] who had approximately 50% WSH ancestry. [10]

The individuals buried in Neolithic Ireland were found to be largely of EEF ancestry (with WHG admixture), and were closely related to peoples of Neolithic Britain and Iberia. It was found that the Neolithic peoples of Ireland had almost entirely replaced the native Irish Hunter-Gatherers through a rapid maritime colonization. [11]

The people of the Funnelbeaker culture of southern Scandinavia were largely of EEF descent, with slight hunter-gatherer admixture, suggesting that the emergence of the Neolithic in Scandinavia was a result of human migration from the south. The Funnelbeakers were found to be genetically highly different from people of the neighboring hunter-gatherer Pitted Ware culture; the latter carried no EEF admixture and were instead genetically similar to other European hunter-gatherers. [12]

The most common paternal haplogroup among EEFs was haplogroup G2a, while haplogroups E1b1 and R1b have also been found. [13] Their maternal haplogroups consisted mainly of West Eurasian lineages including haplogroups H2, I, and T2, however significant numbers of central European farmers belonged to East Asian maternal lineage N9a, which is almost non-existent in modern Europeans, but common in East Asia. [13] [14] [15] However, the high frequency of the East Asian mitochondrial haplogroup N9a in Neolithic cultures of the Carpathian Basin was disputed by another study. [16]

Neolithic cultures in Europe in c. 4500-4000 BC European-middle-neolithic-en.svg
Neolithic cultures in Europe in c. 4500–4000 BC

During the Chalcolithic and early Bronze Age, the EEF-derived cultures of Europe were overwhelmed by successive migrations of Western Steppe Herders (WSHs) from the Pontic–Caspian steppe, who carried roughly equal amounts of Eastern Hunter-Gatherer (EHG) and Caucasus Hunter-Gatherer (CHG) ancestries. These migrations led to EEF paternal DNA lineages in Europe being almost entirely replaced with WSH-derived paternal DNA (mainly subclades of EHG-derived R1b and R1a). EEF maternal DNA (mainly haplogroup N) was also substantially replaced, being supplanted by steppe lineages, [17] [18] suggesting the migrations involved both males and females from the steppe. [19] [20]

A 2017 study found that Bronze Age European with steppe ancestry had elevated EEF ancestry on the X chromosome, suggesting a sex bias, in which Steppe ancestry was inherited by more male than female ancestors. [21] However, this study's results could not be replicated in a follow-up study by Iosif Lazaridis and David Reich, suggesting that the authors had mis-measured the admixture proportions of their sample. [22]

EEF ancestry remains widespread throughout Europe, ranging from about 60% near the Mediterranean Sea (with a peak of 65% in the island of Sardinia) and diminishing northwards to about 10% in northern Scandinavia. [23] According to more recent studies however, the highest EEF ancestry found in modern Europeans ranges from 67% to over 80% in modern Sardinians, Italians, and Iberians, with the lowest EEF ancestry found in modern Europeans ranging around 35-40% in modern Finns, Lithuanians and Latvians. [24] [25] EEF ancestry is also prominent in living Northwest Africans like Moroccans and Algerians. [26]

Physical appearance and allele frequency

Reconstruction of a Neolithic farmer from Europe, Science Museum in Trento Homo sapiens - Neolithic - reconstruction - MUSE.jpg
Reconstruction of a Neolithic farmer from Europe, Science Museum in Trento

European hunter-gatherers were much taller than EEFs, and the replacement of European hunter-gatherers by EEFs resulted in a dramatic decrease in genetic height throughout Europe. During the later phases of the Neolithic, height increased among European farmers, probably due to increasing admixture with hunter-gatherers. During the Late Neolithic and Bronze Age, further reductions of EEF ancestry in Europe due to migrations of peoples with steppe-related ancestry is associated with further increases in height. [27] High frequencies of EEF ancestry in Southern Europe might partly explain the shortness of Southern Europeans as compared to Northern Europeans, who carry increased levels of steppe-related ancestry. [28]

The Early European Farmers are believed to have been mostly dark haired and dark eyed, and light skinned, [29] [30] with the derived SLC24A5 being fixed in the Anatolia Neolithic, [31] although a genetic study of Ötzi the Iceman, a Chalcolithic mummy of EEF ancestry, found that he had a darker skin tone than contemporary southern Europeans. [32] A study on different EEF remains throughout Europe concluded that they mostly had an "intermediate to light skin complexion". [33] A 2024 paper found that risk alleles for mood-related phenotypes are enriched in the ancestry of Neolithic farmers. [34]

Subsistence

EEFs and their Anatolian forebears kept taurine cattle, [35] pigs, [36] sheep, and goats [37] as livestock, and planted cereal crops like wheat. [38]

Social organisation

Poulnabrone dolmen, the Burren, County Clare, Ireland Paulnabrone tombs dolmens burren rocks.jpg
Poulnabrone dolmen, the Burren, County Clare, Ireland

Genetic analysis of individuals found in Neolithic tombs suggests that least some EEF peoples were patrilineal (tracing descent through the male line), with the tombs' occupants mostly consisting of the male descendants of a single male common ancestor and their children, as well as their wives, who were genetically unrelated to their husbands, suggesting female exogamy. [39] [40]

A Neolithic royal buried at Newgrange was found to be highly inbred and possibly the product of an incestual relationship, suggesting that this community was highly socially stratified and dominated by a line of powerful "god-kings". [11]

In terms of overall size, some settlements of the Cucuteni–Trypillia culture, such as Talianki (with a population of around 15,000) in western Ukraine, were as large as the city-states of Sumer in the Fertile Crescent, and these Eastern European settlements predate the Sumerian cities by more than half of a millennium. [41] Research indicates that the settlements had a three-level settlement hierarchy, with the possibility of state-level societies. An excavated mega-structures suggests the presence of public buildings for meetings or ceremonies. [42]

See also

Related Research Articles

The Proto-Indo-Europeans are a hypothetical prehistoric ethnolinguistic group of Eurasia who spoke Proto-Indo-European (PIE), the reconstructed common ancestor of the Indo-European language family.

<span class="mw-page-title-main">Neolithic Europe</span> Era of pre-history

The European Neolithic is the period from the arrival of Neolithic technology and the associated population of Early European Farmers in Europe, c. 7000 BC until c. 2000–1700 BC. The Neolithic overlaps the Mesolithic and Bronze Age periods in Europe as cultural changes moved from the southeast to northwest at about 1 km/year – this is called the Neolithic Expansion.

<span class="mw-page-title-main">Yamnaya culture</span> Archaeological culture from the Pontic steppe

The Yamnaya culture or the Yamna culture, also known as the Pit Grave culture or Ochre Grave culture, is a late Copper Age to early Bronze Age archaeological culture of the region between the Southern Bug, Dniester, and Ural rivers, dating to 3300–2600 BC. It was discovered by Vasily Gorodtsov following his archaeological excavations near the Donets River in 1901–1903. Its name derives from its characteristic burial tradition: Я́мная is a Russian adjective that means 'related to pits ', as these people used to bury their dead in tumuli (kurgans) containing simple pit chambers. Research in recent years has found that Mikhaylovka, in lower Dnieper river, Ukraine, formed the Core Yamnaya culture.

<span class="mw-page-title-main">Cardium pottery</span> Archaeological culture

Cardium pottery or Cardial ware is a Neolithic decorative style that gets its name from the imprinting of the clay with the heart-shaped shell of the Corculum cardissa, a member of the cockle family Cardiidae. These forms of pottery are in turn used to define the Neolithic culture which produced and spread them, commonly called the "Cardial culture".

<span class="mw-page-title-main">Globular Amphora culture</span> Archaeological culture in Central Europe

The Globular Amphora culture (GAC, German: Kugelamphoren-Kultur ; c. 3400–2800 BC, is an archaeological culture in Central Europe. Marija Gimbutas assumed an Indo-European origin, though this is contradicted by newer genetic studies that show a connection to the earlier wave of Early European Farmers rather than to Western Steppe Herders from the Ukrainian and south-western Russian steppes.

<span class="mw-page-title-main">Sredny Stog culture</span> Archaeological culture in Eastern Europe

The Sredny Stog culture or Serednii Stih culture is a pre-Kurgan archaeological culture from the mid. 5th – mid. 4th millennia BC. It is named after the Dnieper river islet of today's Serednii Stih, Ukraine, where it was first located.

<span class="mw-page-title-main">Khvalynsk culture</span> Archaeological culture

The Khvalynsk culture is a Middle Copper Age Eneolithic culture of the middle Volga region. It takes its name from Khvalynsk in Saratov Oblast. It was preceded by the Early Eneolithic Samara culture.

<span class="mw-page-title-main">Dnieper–Donets culture</span> Prehistoric culture north of the Black Sea c. 5000–4200 BCE

The Dnieper–Donets culture complex (DDCC) is a Mesolithic and later Neolithic archaeological culture found north of the Black Sea and dating to ca. 5000-4200 BC. It has many parallels with the Samara culture, and was succeeded by the Sredny Stog culture.

<span class="mw-page-title-main">Battle Axe culture</span> Chalcolithic European archaeological culture

The Battle Axe culture, also called Boat Axe culture, is a Chalcolithic culture that flourished in the coastal areas of the south of the Scandinavian Peninsula and southwest Finland, from c. 2800 BC – c. 2300 BC. It was an offshoot of the Corded Ware culture, and replaced the Funnelbeaker culture in southern Scandinavia, probably through a process of mass migration and population replacement. It is thought to have been responsible for spreading Indo-European languages and other elements of Indo-European culture to the region. It co-existed for a time with the hunter-gatherer Pitted Ware culture, which it eventually absorbed, developing into the Nordic Bronze Age. The Nordic Bronze Age has, in turn, been considered ancestral to the Germanic peoples.

<span class="mw-page-title-main">Genetic history of Europe</span>

The genetic history of Europe includes information around the formation, ethnogenesis, and other DNA-specific information about populations indigenous, or living in Europe.

The genetic history of the British Isles is the subject of research within the larger field of human population genetics. It has developed in parallel with DNA testing technologies capable of identifying genetic similarities and differences between both modern and ancient populations. The conclusions of population genetics regarding the British Isles in turn draw upon and contribute to the larger field of understanding the history of the human occupation of the area, complementing work in linguistics, archaeology, history and genealogy.

<span class="mw-page-title-main">Genetic history of Italy</span>

The genetic history of Italy includes information around the formation, ethnogenesis, and other DNA-specific information about the inhabitants of Italy. Modern Italians mostly descend from the ancient peoples of Italy, including Indo-European speakers and pre-Indo-European speakers. Other groups migrated into Italy as a result of the Roman Empire, when the Italian peninsula attracted people from the various regions of the empire, and during the Middle Ages with the arrival of Ostrogoths, Longobards, Saracens and Normans among others. Based on DNA analysis, there is evidence of regional genetic substructure and continuity within modern Italy dating back to antiquity.

<span class="mw-page-title-main">Western hunter-gatherer</span> Archaeogenetic name for an ancestral genetic component

In archaeogenetics, western hunter-gatherer is a distinct ancestral component of modern Europeans, representing descent from a population of Mesolithic hunter-gatherers who scattered over western, southern and central Europe, from the British Isles in the west to the Carpathians in the east, following the retreat of the ice sheet of the Last Glacial Maximum. It is closely associated and sometimes considered synonymous with the concept of the Villabruna cluster, named after Ripari Villabruna cave in Italy, known from the terminal Pleistocene of Europe, which is largely ancestral to later WHG populations.

<span class="mw-page-title-main">Caucasus hunter-gatherer</span> Anatomically modern human genetic lineage identified in 2015

Caucasus hunter-gatherer (CHG), also called Satsurblia cluster, is an anatomically modern human genetic lineage, first identified in a 2015 study, based on the population genetics of several modern Western Eurasian populations.

<span class="mw-page-title-main">Eastern hunter-gatherer</span> Archaeogenetic name for an ancestral genetic component

In archaeogenetics, eastern hunter-gatherer (EHG), sometimes east European hunter-gatherer or eastern European hunter-gatherer, is a distinct ancestral component that represents Mesolithic hunter-gatherers of Eastern Europe.

Basal Eurasian is a proposed lineage of anatomically modern humans with reduced, or zero, Neanderthal admixture (ancestry) compared to other ancient non-Africans. Basal Eurasians represent a sister lineage to other Eurasians and may have originated from the Southern Middle East, specifically the Arabian Peninsula, or North Africa, and are said to have contributed ancestry to various West Eurasian, South Asian, and Central Asian as well as African groups. This Basal Eurasian component is also proposed to explain the lower archaic admixture among modern West Eurasians compared with East Eurasians, although alternatives without the need of such Basal admixture exist as well. Basal Eurasian ancestry had likely admixed into West Eurasian groups present in West Asia as early as 26,000 years ago, prior to the Last Glacial Maximum, with this ancestry being subsequently spread by later migrations, such as those of the Anatolian Neolithic Farmers into Europe during the Holocene.

Anatolian hunter-gatherer (AHG) is a distinct anatomically modern human archaeogenetic lineage, first identified in a 2019 study based on the remains of a single Epipaleolithic individual found in central Anatolia, radiocarbon dated to around 13,500 BCE. A population related to this individual was the main source of the ancestry of later Anatolian Neolithic Farmers, who along with Western Hunter Gatherers (WHG) and Ancient North Eurasians are one of the three currently known ancestral genetic contributors to present-day Europeans.

<span class="mw-page-title-main">Scandinavian hunter-gatherer</span> Archaeogenetic name for an ancestral genetic component

In archaeogenetics, the term Scandinavian hunter-gatherer (SHG) is the name given to a distinct ancestral component that represents descent from Mesolithic hunter-gatherers of Scandinavia. Genetic studies suggest that the SHGs were a mix of western hunter-gatherers (WHGs) initially populating Scandinavia from the south during the Holocene, and eastern hunter-gatherers (EHGs), who later entered Scandinavia from the north along the Norwegian coast. During the Neolithic, they admixed further with Early European Farmers (EEFs) and Western Steppe Herders (WSHs). Genetic continuity has been detected between the SHGs and members of the Pitted Ware culture (PWC), and to a certain degree, between SHGs and modern northern Europeans. The Sámi, on the other hand, have been found to be completely unrelated to the PWC.

<span class="mw-page-title-main">Western Steppe Herders</span> Archaeogenetic name for an ancestral genetic component

In archaeogenetics, the term Western Steppe Herders (WSH), or Western Steppe Pastoralists, is the name given to a distinct ancestral component first identified in individuals from the Chalcolithic steppe around the turn of the 5th millennium BC, subsequently detected in several genetically similar or directly related ancient populations including the Khvalynsk, Repin, Sredny Stog, and Yamnaya cultures, and found in substantial levels in contemporary European, Central Asian, South Asian and West Asian populations. This ancestry is often referred to as Yamnaya ancestry, Yamnaya-related ancestry, Steppe ancestry or Steppe-related ancestry.

<span class="mw-page-title-main">Genetic history of Sardinia</span>

The genetic history of Sardinia consists of the study of the gene pool of the Sardinian people with two main objectives. The first is purely cultural and is to reconstruct the natural history of the population. The other instead has the aim of understanding the genetic causes of high life expectancy and of some pathologies by exploiting some peculiarities of the Sardinian population.

References

  1. 1 2 Krause, Johannes; Jeong, Choongwon; Haak, Wolfgang; Posth, Cosimo; Stockhammer, Philipp W.; Mustafaoğlu, Gökhan; Fairbairn, Andrew; Bianco, Raffaela A.; Julia Gresky (19 March 2019). "Late Pleistocene human genome suggests a local origin for the first farmers of central Anatolia". Nature Communications. 10 (1): 1218. Bibcode:2019NatCo..10.1218F. doi: 10.1038/s41467-019-09209-7 . ISSN   2041-1723. PMC   6425003 . PMID   30890703.
  2. Marchi, Nina; Winkelbach, Laura; Schulz, Ilektra; Brami, Maxime; Hofmanová, Zuzana; Blöcher, Jens; Reyna-Blanco, Carlos S.; Diekmann, Yoan; Thiéry, Alexandre; Kapopoulou, Adamandia; Link, Vivian; Piuz, Valérie; Kreutzer, Susanne; Figarska, Sylwia M.; Ganiatsou, Elissavet (May 2022). "The genomic origins of the world's first farmers". Cell. 185 (11): 1842–1859.e18. doi:10.1016/j.cell.2022.04.008. ISSN   0092-8674. PMC   9166250 . PMID   35561686.
  3. Lazaridis, Iosif; Nadel, Dani; Rollefson, Gary; Merrett, Deborah C.; Rohland, Nadin; Mallick, Swapan; Fernandes, Daniel; Novak, Mario; Gamarra, Beatriz; Sirak, Kendra; Connell, Sarah; Stewardson, Kristin; Harney, Eadaoin; Fu, Qiaomei; Gonzalez-Fortes, Gloria (8 August 2016). "Genomic insights into the origin of farming in the ancient Near East". Nature. 536 (7617): 419–424. Bibcode:2016Natur.536..419L. doi:10.1038/nature19310. PMC   5003663 . PMID   27459054.
  4. Mathieson et al. 2018.
  5. Curry, Andrew (August 2019). "The first Europeans weren't who you might think". National Geographic. Archived from the original on 19 March 2021.
  6. Spinney, Laura (1 July 2020). "When the First Farmers Arrived in Europe, Inequality Evolved". Scientific American.
  7. Simões, Luciana G.; Günther, Torsten; Martínez-Sánchez, Rafael M.; Vera-Rodríguez, Juan Carlos; Iriarte, Eneko; Rodríguez-Varela, Ricardo; Bokbot, Youssef; Valdiosera, Cristina; Jakobsson, Mattias (15 June 2023). "Northwest African Neolithic initiated by migrants from Iberia and Levant". Nature. 618 (7965): 550–556. Bibcode:2023Natur.618..550S. doi:10.1038/s41586-023-06166-6. ISSN   0028-0836. PMC   10266975 . PMID   37286608.
  8. Brace, Selina; et al. (15 April 2019). "Ancient genomes indicate population replacement in Early Neolithic Britain". Nature Ecology and Evolution . 3 (5). Nature Research: 765–771. Bibcode:2019NatEE...3..765B. doi:10.1038/s41559-019-0871-9. PMC   7005801 . PMID   32034181.
  9. The Beaker Phenomenon And The Genomic Transformation Of Northwest Europe (2017)
  10. Bianca Preda (6 May 2020). "Yamnaya – Corded Ware – Bell Beakers: How to conceptualise events of 5000 years ago". The Yamnaya Impact On Prehistoric Europe. University of Helsinki.
  11. 1 2 Cassidy, Lara M.; et al. (17 June 2020). "A dynastic elite in monumental Neolithic society". Nature . 582 (7812). Nature Research: 384–388. Bibcode:2020Natur.582..384C. doi:10.1038/s41586-020-2378-6. PMC   7116870 . PMID   32555485. S2CID   219729757.
  12. Malmström, Helena; et al. (19 January 2015). "Ancient mitochondrial DNA from the northern fringe of the Neolithic farming expansion in Europe sheds light on the dispersion process". Proceedings of the Royal Society B . 370 (1660). Royal Society: 1. doi:10.1098/rstb.2013.0373. PMC   4275881 . PMID   25487325.
  13. 1 2 Manco, Jean (2016). Ancestral Journeys: The Peopling of Europe from the First Venturers to the Vikings (Revised and Updated ed.). Thames & Hudson. p. 98-100. ISBN   978-0-500-77290-4.
  14. Guba, Zsuzsanna; Hadadi, Éva; Major, Ágnes; Furka, Tünde; Juhász, Emese; Koós, Judit; Nagy, Károly; Zeke, Tamás (November 2011). "HVS-I polymorphism screening of ancient human mitochondrial DNA provides evidence for N9a discontinuity and East Asian haplogroups in the Neolithic Hungary". Journal of Human Genetics. 56 (11): 784–796. doi: 10.1038/jhg.2011.103 . ISSN   1435-232X. PMID   21918529. S2CID   20827921.
  15. Derenko, Miroslava; Malyarchuk, Boris; Grzybowski, Tomasz; Denisova, Galina; Rogalla, Urszula; Perkova, Maria; Dambueva, Irina; Zakharov, Ilia (21 December 2010). "Origin and Post-Glacial Dispersal of Mitochondrial DNA Haplogroups C and D in Northern Asia". PLOS ONE. 5 (12): e15214. Bibcode:2010PLoSO...515214D. doi: 10.1371/journal.pone.0015214 . ISSN   1932-6203. PMC   3006427 . PMID   21203537.
  16. Bánffy, Eszter (7 June 2012). "'Early Neolithic' graves of the Carpathian Basin are in fact 6000 years younger—Appeal for real interdisciplinarity between archaeology and ancient DNA research". Journal of Human Genetics. 57 (7): 467–469. doi:10.1038/jhg.2012.36. PMID   22673687.
  17. Crabtree, Pam J.; Bogucki, Peter (25 January 2017). European Archaeology as Anthropology: Essays in Memory of Bernard Wailes. University of Pennsylvania Press. p. 55. ISBN   978-1-934536-90-2.p.55: "In addition, uniparental markers changed suddenly as mtDNA N1a and Y haplogroup G2a, which had been very common in the EEF agricultural population, were replaced by Y haplogroups R1a and R1b and by a variety of mtDNA haplogroups typical of the Steppe Yamnaya population. The uniparental markers show that the migrants included both men and women from the steppes."
  18. Översti, Sanni; Majander, Kerttu; Salmela, Elina; Salo, Kati; Arppe, Laura; Belskiy, Stanislav; Etu-Sihvola, Heli; Laakso, Ville; Mikkola, Esa; Pfrengle, Saskia; Putkonen, Mikko; Taavitsainen, Jussi-Pekka; Vuoristo, Katja; Wessman, Anna; Sajantila, Antti; Oinonen, Markku; Haak, Wolfgang; Schuenemann, Verena J.; Krause, Johannes; Palo, Jukka U.; Onkamo, Päivi (15 November 2019). "Human mitochondrial DNA lineages in Iron-Age Fennoscandia suggest incipient admixture and eastern introduction of farming-related maternal ancestry". Scientific Reports. 9 (1): 16883. Bibcode:2019NatSR...916883O. doi:10.1038/s41598-019-51045-8. ISSN   2045-2322. PMC   6858343 . PMID   31729399. "The subsequent spread of Yamnaya-related people and Corded Ware Culture in the late Neolithic and Bronze Age were accompanied with the increase of haplogroups I, U2 and T1 in Europe (See8 and references therein)."
  19. Juras et al. 2018: We identified, for the first time in ancient populations, the rare mitochondrial haplogroup X4 in two Bronze Age Catacomb culture-associated individuals. Genetic similarity analyses show close maternal genetic affinities between populations associated with both eastern and Baltic Corded Ware culture, and the Yamnaya horizon, in contrast to larger genetic differentiation between populations associated with western Corded Ware culture and the Yamnaya horizon. This indicates that females with steppe ancestry contributed to the formation of populations associated with the eastern Corded Ware culture while more local people, likely of Neolithic farmer ancestry, contributed to the formation of populations associated with western Corded Ware culture.
  20. Olalde et al. 2019, pp. 1–2.
  21. Goldberg et al. 2017.
  22. Lazaridis, Iosif; Reich, David (5 May 2017). "Failure to replicate a genetic signal for sex bias in the steppe migration into central Europe". Proceedings of the National Academy of Sciences. 114 (20): E3873–E3874. Bibcode:2017PNAS..114E3873L. doi: 10.1073/pnas.1704308114 . ISSN   0027-8424. PMC   5441797 . PMID   28476764.
  23. Fernandes, Daniel M.; et al. (2020). "The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean". Nature Ecology & Evolution. 4 (3): 334–345. Bibcode:2020NatEE...4..334F. doi:10.1038/s41559-020-1102-0. PMC   7080320 . PMID   32094539.
  24. Allentoft, Morten E.; Sikora, Martin; Refoyo-Martínez, Alba; Irving-Pease, Evan K.; Fischer, Anders; Barrie, William; Ingason, Andrés; Stenderup, Jesper; Sjögren, Karl-Göran; Pearson, Alice; Mota, Barbara; Paulsson, Bettina Schulz; Halgren, Alma; Macleod, Ruairidh; Jørkov, Marie Louise Schjellerup (5 May 2022), Population Genomics of Stone Age Eurasia, pp. 2022.05.04.490594, doi:10.1101/2022.05.04.490594, S2CID   248563160
  25. Christina, Clemente, Florian Unterlaender, Martina Dolgova, Olga Amorim, Carlos Eduardo G. Coroado-Santos, Francisco Neuenschwander, Samuel Ganiatsou, Elissavet Davalos, Diana I. Cruz Anchieri, Lucas Michaud, Frederic Winkelbach, Laura Bloecher, Jens Cardenas, Yami Ommar Arizmendi da Mota, Barbara Sousa Kalliga, Eleni Souleles, Angelos Kontopoulos, Ioannis Karamitrou-Mentessidi, Georgia Philaniotou, Olga Sampson, Adamantios Theodorou, Dimitra Tsipopoulou, Metaxia Akamatis, Ioannis Halstead, Paul Kotsakis, Kostas Urem-Kotsou, Dushka Panagiotopoulos, Diamantis Ziota, Christina Triantaphyllou, Sevasti Delaneau, Olivier Jensen, Jeffrey D. Victor Moreno-Mayar, J. Burger, Joachim Sousa, Vitor C. Lao, Oscar Malaspinas, Anna-Sapfo Papageorgopoulou (2021). The genomic history of the Aegean palatial civilizations. p. 41. OCLC   1263227362.{{cite book}}: CS1 maint: multiple names: authors list (link)
  26. Serra-Vidal, Gerard; Lucas-Sanchez, Marcel; Fadhlaoui-Zid, Karima; Bekada, Asmahan; Zalloua, Pierre; Comas, David (November 2019). "Heterogeneity in Palaeolithic Population Continuity and Neolithic Expansion in North Africa". Current Biology. 29 (22): 3953–3959.e4. Bibcode:2019CBio...29E3953S. doi:10.1016/j.cub.2019.09.050. PMID   31679935.
  27. Martiniano et al. 2017, p. 9.
  28. Mathieson et al. 2015 , p. 4. "[R]esults suggest that the modern South-North gradient in height across Europe is due to both increased steppe ancestry in northern populations, and selection for decreased height in Early Neolithic migrants to southern Europe."
  29. Reich 2018 , p. 96
  30. Lalueza-Fox, Carles (1 February 2022). Inequality: A Genetic History. MIT Press. p. 29. ISBN   978-0-262-04678-7. "p.29: "Physically, early farmers from Anatolia were different from those foragers; they had brown eyes but fair skin...."
  31. Mathieson, Iain; Lazaridis, Iosif; Rohland, Nadin; Mallick, Swapan; Patterson, Nick; Roodenberg, Songül Alpaslan; Harney, Eadaoin; Stewardson, Kristin; Fernandes, Daniel; Novak, Mario; Sirak, Kendra; Gamba, Cristina; Jones, Eppie R.; Llamas, Bastien; Dryomov, Stanislav (December 2015). "Genome-wide patterns of selection in 230 ancient Eurasians". Nature. 528 (7583): 499–503. Bibcode:2015Natur.528..499M. doi:10.1038/nature16152. ISSN   1476-4687. PMC   4918750 . PMID   26595274.
  32. Wang, Ke; Prüfer, Kay; Krause-Kyora, Ben; Childebayeva, Ainash; Schuenemann, Verena J.; Coia, Valentina; Maixner, Frank; Zink, Albert; Schiffels, Stephan; Krause, Johannes (16 August 2023). "High-coverage genome of the Tyrolean Iceman reveals unusually high Anatolian farmer ancestry". Cell Genomics. 3 (9): 100377. doi:10.1016/j.xgen.2023.100377. ISSN   2666-979X. PMC   10504632 . PMID   37719142.
  33. Marchi, Nina; Winkelbach, Laura; Schulz, Ilektra; Brami, Maxime; Hofmanová, Zuzana; Blöcher, Jens; Reyna-Blanco, Carlos S.; Diekmann, Yoan; Thiéry, Alexandre; Kapopoulou, Adamandia; Link, Vivian; Piuz, Valérie; Kreutzer, Susanne; Figarska, Sylwia M.; Ganiatsou, Elissavet (May 2022). "The genomic origins of the world's first farmers". Cell. 185 (11): 1842–1859.e18. doi:10.1016/j.cell.2022.04.008. ISSN   0092-8674. PMC   9166250 . PMID   35561686. We find that the vast majority of early farmers in our dataset had intermediate to light skin complexion
  34. Irving-Pease, Evan K.; Refoyo-Martínez, Alba; Barrie, William; Ingason, Andrés; Pearson, Alice; Fischer, Anders; Sjögren, Karl-Göran; Halgren, Alma S.; Macleod, Ruairidh; Demeter, Fabrice; Henriksen, Rasmus A.; Vimala, Tharsika; McColl, Hugh; Vaughn, Andrew H.; Speidel, Leo (January 2024). "The selection landscape and genetic legacy of ancient Eurasians". Nature. 625 (7994): 312–320. Bibcode:2024Natur.625..312I. doi:10.1038/s41586-023-06705-1. ISSN   1476-4687. PMC   10781624 . PMID   38200293.
  35. Scheu, Amelie; Powell, Adam; Bollongino, Ruth; Vigne, Jean-Denis; Tresset, Anne; Çakırlar, Canan; Benecke, Norbert; Burger, Joachim (December 2015). "The genetic prehistory of domesticated cattle from their origin to the spread across Europe". BMC Genetics. 16 (1): 54. doi: 10.1186/s12863-015-0203-2 (inactive 8 December 2024). ISSN   1471-2156. PMC   4445560 . PMID   26018295.{{cite journal}}: CS1 maint: DOI inactive as of December 2024 (link)
  36. Frantz, Laurent A. F.; Haile, James; Lin, Audrey T.; Scheu, Amelie; Geörg, Christina; Benecke, Norbert; Alexander, Michelle; Linderholm, Anna; Mullin, Victoria E.; Daly, Kevin G.; Battista, Vincent M.; Price, Max; Gron, Kurt J.; Alexandri, Panoraia; Arbogast, Rose-Marie (27 August 2019). "Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe". Proceedings of the National Academy of Sciences. 116 (35): 17231–17238. Bibcode:2019PNAS..11617231F. doi: 10.1073/pnas.1901169116 . ISSN   0027-8424. PMC   6717267 . PMID   31405970.
  37. Gillis, Rosalind E.; Gaastra, Jane S.; Linden, Marc Vander; Vigne, Jean-Denis (2 January 2022). "A Species Specific Investigation Into Sheep and Goat Husbandry During the Early European Neolithic". Environmental Archaeology. 27 (1): 8–19. Bibcode:2022EnvAr..27....8G. doi:10.1080/14614103.2019.1615214. ISSN   1461-4103.
  38. Brami, Maxime; Heyd, Volker (January 2011). "The origins of Europe's first farmers: The role of Hacılar and Western Anatolia, fifty years on". Praehistorische Zeitschrift. 86 (2). doi:10.1515/pz.2011.011. ISSN   0079-4848.
  39. Fowler, Chris; Olalde, Iñigo; Cummings, Vicki; Armit, Ian; Büster, Lindsey; Cuthbert, Sarah; Rohland, Nadin; Cheronet, Olivia; Pinhasi, Ron; Reich, David (27 January 2022). "A high-resolution picture of kinship practices in an Early Neolithic tomb". Nature. 601 (7894): 584–587. Bibcode:2022Natur.601..584F. doi:10.1038/s41586-021-04241-4. ISSN   0028-0836. PMC   8896835 . PMID   34937939.
  40. Seersholm, Frederik Valeur; Sjögren, Karl-Göran; Koelman, Julia; Blank, Malou; Svensson, Emma M.; Staring, Jacqueline; Fraser, Magdalena; Pinotti, Thomaz; McColl, Hugh; Gaunitz, Charleen; Ruiz-Bedoya, Tatiana; Granehäll, Lena; Villegas-Ramirez, Berenice; Fischer, Anders; Price, T. Douglas (August 2024). "Repeated plague infections across six generations of Neolithic Farmers". Nature. 632 (8023): 114–121. Bibcode:2024Natur.632..114S. doi:10.1038/s41586-024-07651-2. ISSN   1476-4687. PMC   11291285 . PMID   38987589.
  41. Menotti, Francesco (2007), "The Tripolye house, a sacred and profane coexistence!", WAC-6, 6th World Archaeological Congress (WAC6), Dublin, OCLC   368044032, archived from the original on 13 April 2014{{citation}}: CS1 maint: location missing publisher (link)
  42. Chapman, John; Videiko, Mikhail; Gaydarska, Bisserka; Burdo, Natalia; Hale, Duncan; Villis, Richard; Swann, Natalie; Thomas, Nathan; Edwards, Patricia; Blair, Andrew; Hayes, Ashley; Nebbia, Marco; Rud, Vitalij (2014). "The planning of the earliest European proto-towns: A new geophysical plan of the Trypillia mega-site of Nebelivka, Kirovograd Domain, Ukraine". Antiquity. 88 (339).

Bibliography

Further reading

Notes

  1. Sometimes called as First European Farmers, Neolithic European Farmers or Ancient Aegean Farmers