Haplogroup N (mtDNA)

Last updated
Haplogroup N
World map of prehistoric human migrations.jpg
Ancient dispersal of haplogroup L3, its descendant M and N lineages, and other mtDNA clades. Numbers represent thousand years before present.
Possible time of origin~55-70,000 YBP [1] [2] or 50-65,000 YBP [3]
Possible place of origin Asia [4] [5] [6] [7] [8] or East Africa [9] [10] [11]
Ancestor L3
DescendantsN1'5, N2, N8, N9, N10, N11, N13, N14, N21, N22, A, I, O, R, S, X, Y, W
Defining mutations8701, 9540, 10398, 10873, 15301 [12]

Haplogroup N is a human mitochondrial DNA (mtDNA) clade. A macrohaplogroup, its descendant lineages are distributed across many continents. Like its sibling macrohaplogroup M, macrohaplogroup N is a descendant of the haplogroup L3.

Contents

All mtDNA haplogroups found outside of Africa are descendants of either haplogroup N or its sibling haplogroup M. M and N are the signature maternal haplogroups that define the theory of the recent African origin of modern humans and subsequent early human migrations around the world. The global distribution of haplogroups N and M indicates that there was likely at least one major prehistoric migration of humans out of Africa, with both N and M later evolving outside the continent. [7]

Origins

Suggested routes of the initial settlement of Europe based on mtDNA haplogroups M and N, Metspalu et al. 2004. A major population split near the Persian Gulf would explain the ubiquity of Haplogroup N and the absence of Haplogroup M in West Eurasia Peopling of eurasia.jpg
Suggested routes of the initial settlement of Europe based on mtDNA haplogroups M and N, Metspalu et al. 2004. A major population split near the Persian Gulf would explain the ubiquity of Haplogroup N and the absence of Haplogroup M in West Eurasia

There is widespread agreement in the scientific community concerning the African ancestry of haplogroup L3 (haplogroup N's parent clade). [13] However, whether or not the mutations which define haplogroup N itself first occurred within Asia or Africa has been a subject for ongoing discussion and study. [13]

The out of Africa hypothesis has gained generalized consensus. However, many specific questions remain unsettled. To know whether the two M and N macrohaplogroups that colonized Eurasia were already present in Africa before the exit is puzzling.

Torroni et al. 2006 state that Haplogroups M, N and R occurred somewhere between East Africa and the Persian Gulf. [14]

Also related to the origins of haplogroup N is whether ancestral haplogroups M, N and R were part of the same migration out of Africa, or whether Haplogroup N left Africa via the Northern route through the Levant, and M left Africa via Horn of Africa. This theory was suggested because haplogroup N is by far the predominant haplogroup in Western Eurasia, and haplogroup M is absent in Western Eurasia, but is predominant in India and is common in regions East of India. However, the mitochondrial DNA variation in isolated "relict" populations in southeast Asia and among Indigenous Australians supports the view that there was only a single dispersal from Africa. Southeast Asian populations and Indigenous Australians all possess deep rooted clades of both haplogroups M and N. [15] The distribution of the earliest branches within haplogroups M, N, and R across Eurasia and Oceania therefore supports a three-founder-mtDNA scenario and a single migration route out of Africa. [16] These findings also highlight the importance of Indian subcontinent in the early genetic history of human settlement and expansion. [17]

Asian origin hypothesis

The hypothesis of Asia as the place of origin of haplogroup N is supported by the following:

  1. Haplogroup N is found in all parts of the world but has low frequencies in Sub-Saharan Africa. According to a number of studies, the presence of Haplogroup N in Africa is most likely the result of back migration from Eurasia. [6]
  2. The oldest clades of macrohaplogroup N are found in Asia and Australia.
  3. It would be paradoxical that haplogroup N had traveled all the distance to Australia or New World yet failed to affect other populations within Africa besides North Africans and Horn Africans.
  4. The mitochondrial DNA variation in isolated "relict" populations in southeast Asia supports the view that there was only a single dispersal from Africa. [15] The distribution of the earliest branches within haplogroups M, N, and R across Eurasia and Oceania provides additional evidence for a three-founder-mtDNA scenario and a single migration route out of Africa. [16] These findings also highlight the importance of Indian subcontinent in the early genetic history of human settlement and expansion. [17] Therefore, N's history is similar to M and R which have their most probable origin in South Asia.

A study (Vai et al. 2019), finds a basal branch of maternal haplogroup N in early Neolithic North African remains from the Libyan site of Takarkori. The authors propose that N most likely split from L3 in the Arabian peninsula and later migrated back to North Africa, with its sister haplogroup M also likely splitting from L3 in the Middle East, but also suggest that N may have possibly diverged in North Africa, and state that more information is necessary to be certain. [3]

African origin hypothesis

According to Toomas Kivisild "the lack of L3 lineages other than M and N in India and among non-African mitochondria in general suggests that the earliest migration(s) of modern humans already carried these two mtDNA ancestors, via a departure route over the Horn of Africa. [9]

In 2019, a study by Vai et al. presented evidence of a basal branch of haplogroup N from the Neolithic Sahara. They suggest that N either diverged from haplogroup L3 in the Near East (possibly in the Arabian peninsula, following the exit of L3 from Africa), then back-migrated to North Africa, or that it instead may have originated in North Africa (having diverged from L3 there). [3]

Distribution

Dispersal route of Haplogroup N and its subgroups Human migrations and mitochondrial haplogroups.PNG
Dispersal route of Haplogroup N and its subgroups

Haplogroup N is derived from the ancestral L3 macrohaplogroup, which represents the migration discussed in the theory of the recent African origin of modern humans. Haplogroup N is the ancestral haplogroup to almost all clades today distributed in Europe and Oceania, as well as many found in Asia and the Americas. It is believed to have arisen at a similar time to haplogroup M.

Subgroups distribution

Haplogroup N's derived clades include the macro-haplogroup R and its descendants, and haplogroups A, I, S, W, X, and Y.

Rare unclassified haplogroup N* has been found among fossils belonging to the Cardial and Epicardial culture (Cardium pottery) and the Pre-Pottery Neolithic B. [18] A rare unclassified form of N has been also been reported in modern Algeria. [19]

Subclades

Tree

This phylogenetic tree of haplogroup N subclades is based on the paper by Mannis van Oven and Manfred Kayser Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation [12] and subsequent published research.

See also

Phylogenetic tree of human mitochondrial DNA (mtDNA) haplogroups

  Mitochondrial Eve (L)  
L0 L1–6 
L1 L2   L3    L4 L5 L6
M N  
CZ D E G Q   O A S R   I W X Y
C Z B F R0   pre-JT   P   U
HV JT K
H V J T

Related Research Articles

<span class="mw-page-title-main">Haplogroup</span> Group of similar haplotypes

A haplotype is a group of alleles in an organism that are inherited together from a single parent, and a haplogroup is a group of similar haplotypes that share a common ancestor with a single-nucleotide polymorphism mutation. More specifically, a haplotype is a combination of alleles at different chromosomal regions that are closely linked and that tend to be inherited together. As a haplogroup consists of similar haplotypes, it is usually possible to predict a haplogroup from haplotypes. Haplogroups pertain to a single line of descent. As such, membership of a haplogroup, by any individual, relies on a relatively small proportion of the genetic material possessed by that individual.

<span class="mw-page-title-main">Haplogroup M (mtDNA)</span> Widespread human mitochondrial DNA grouping indicating common ancestry

Haplogroup M is a human mitochondrial DNA (mtDNA) haplogroup. An enormous haplogroup spanning all the continents, the macro-haplogroup M, like its sibling the macro-haplogroup N, is a descendant of the haplogroup L3.

Haplogroup U is a human mitochondrial DNA haplogroup (mtDNA). The clade arose from haplogroup R, likely during the early Upper Paleolithic. Its various subclades are found widely distributed across Northern and Eastern Europe, Central, Western and South Asia, as well as North Africa, the Horn of Africa, and the Canary Islands.

<span class="mw-page-title-main">Haplogroup R (mtDNA)</span> Human mitochondrial DNA haplogroup

Haplogroup R is a widely distributed human mitochondrial DNA (mtDNA) haplogroup. Haplogroup R is associated with the peopling of Eurasia after about 70,000 years ago, and is distributed in modern populations throughout the world outside of sub-Saharan Africa.

<span class="mw-page-title-main">Haplogroup B (mtDNA)</span> Human mitochondrial DNA haplogroup

In human mitochondrial genetics, haplogroup B is a human mitochondrial DNA (mtDNA) haplogroup.

<span class="mw-page-title-main">Haplogroup F (mtDNA)</span> Human mitochondrial DNA haplogroup

Haplogroup F is a human mitochondrial DNA (mtDNA) haplogroup. The clade is most common in East Asia and Southeast Asia. It has not been found among Native Americans.

<span class="mw-page-title-main">Haplogroup A (mtDNA)</span> Human mitochondrial DNA grouping indicating common ancestry

In human mitochondrial genetics, Haplogroup A is a human mitochondrial DNA (mtDNA) haplogroup.

<span class="mw-page-title-main">Haplogroup C (mtDNA)</span> Human mitochondrial DNA haplogroup

In human mitochondrial genetics, Haplogroup C is a human mitochondrial DNA (mtDNA) haplogroup.

<span class="mw-page-title-main">Haplogroup D (mtDNA)</span> Human mitochondrial DNA (mtDNA) haplogroup

In human mitochondrial genetics, Haplogroup D is a human mitochondrial DNA (mtDNA) haplogroup. It is a descendant haplogroup of haplogroup M, thought to have arisen somewhere in East Asia, between roughly 60,000 and 35,000 years ago.

<span class="mw-page-title-main">Haplogroup L3</span> Widespread human mitochondrial DNA grouping indicating common ancestry

Haplogroup L3 is a human mitochondrial DNA (mtDNA) haplogroup. The clade has played a pivotal role in the early dispersal of anatomically modern humans.

In human mitochondrial genetics, Haplogroup Z is a human mitochondrial DNA (mtDNA) haplogroup.

<span class="mw-page-title-main">Haplogroup N-M231</span> Human Y chromosome DNA grouping common in North Eurasia

Haplogroup N (M231) is a Y-chromosome DNA haplogroup defined by the presence of the single-nucleotide polymorphism (SNP) marker M231.

<span class="mw-page-title-main">Human mitochondrial DNA haplogroup</span> Haplogroup defined by differences in human mitochondrial DNA

In human genetics, a human mitochondrial DNA haplogroup is a haplogroup defined by differences in human mitochondrial DNA. Haplogroups are used to represent the major branch points on the mitochondrial phylogenetic tree. Understanding the evolutionary path of the female lineage has helped population geneticists trace the matrilineal inheritance of modern humans back to human origins in Africa and the subsequent spread around the globe.

<span class="mw-page-title-main">Haplogroup Y</span> Human mitochondrial DNA grouping indicating common ancestry

In human mitochondrial genetics, Haplogroup Y is a human mitochondrial DNA (mtDNA) haplogroup.

In human mitochondrial genetics, Haplogroup M30 is a human mitochondrial DNA (mtDNA) haplogroup.

<span class="mw-page-title-main">Barga Mongols</span> Subgroup of Mongols from east of Lake Baikal

The Barga are a subgroup of the Buryats which gave its name to the Baikal region – "Bargujin-Tukum" – "the land's end", according to the conception of Mongol peoples in the 13th and 14th centuries.

<span class="mw-page-title-main">Macro-haplogroup L</span> Human mitochondrial lineage

In human mitochondrial genetics, L is the mitochondrial DNA macro-haplogroup that is at the root of the anatomically modern human mtDNA phylogenetic tree. As such, it represents the most ancestral mitochondrial lineage of all currently living modern humans, also dubbed "Mitochondrial Eve".

In human mitochondrial genetics, haplogroup M18 is a human mitochondrial DNA (mtDNA) haplogroup. It is an India-specific lineage.

Haplogroup C-M48 also known as C2b1a2 is a Y-chromosome DNA haplogroup.

<span class="mw-page-title-main">Haplogroup D-CTS3946</span> Human Y-chromosome DNA haplogroup

Haplogroup D, also known as D-CTS3946, is a Y-chromosome haplogroup. Like its relative distant sibling, haplogroup E-M96, D-CTS3946 has the YAP+ unique-event polymorphism, which defines their parent, haplogroup DE. D-CTS3946 has two basal branches, D1 and D2. D1 and D2 are found primarily in East Asia, at low frequency in Central Asia and Southeast Asia, and at very low frequency in Western Africa and Western Asia.

References

  1. Soares, Pedro; Ermini, Luca; Thomson, Noel; Mormina, Maru; Rito, Teresa; Röhl, Arne; Salas, Antonio; Oppenheimer, Stephen; MacAulay, Vincent; Richards, Martin B. (2009). "Correcting for Purifying Selection: An Improved Human Mitochondrial Molecular Clock". The American Journal of Human Genetics. 84 (6): 740–59. doi:10.1016/j.ajhg.2009.05.001. PMC   2694979 . PMID   19500773.
  2. Soares, P; Alshamali, F; Pereira, J. B; Fernandes, V; Silva, N. M; Afonso, C; Costa, M. D; Musilova, E; MacAulay, V; Richards, M. B; Cerny, V; Pereira, L (2011). "The Expansion of mtDNA Haplogroup L3 within and out of Africa". Molecular Biology and Evolution. 29 (3): 915–927. doi: 10.1093/molbev/msr245 . PMID   22096215.
  3. 1 2 3 Vai S, Sarno S, Lari M, Luiselli D, Manzi G, Gallinaro M, Mataich S, Hübner A, Modi A, Pilli E, Tafuri MA, Caramelli D, di Lernia S (March 2019). "Ancestral mitochondrial N lineage from the Neolithic 'green' Sahara". Sci Rep. 9 (1): 3530. Bibcode:2019NatSR...9.3530V. doi:10.1038/s41598-019-39802-1. PMC   6401177 . PMID   30837540.
  4. MacAulay, V.; Hill, C; Achilli, A; Rengo, C; Clarke, D; Meehan, W; Blackburn, J; Semino, O; et al. (2005). "Single, Rapid Coastal Settlement of Asia Revealed by Analysis of Complete Mitochondrial Genomes" (PDF). Science. 308 (5724): 1034–36. Bibcode:2005Sci...308.1034M. doi:10.1126/science.1109792. PMID   15890885. S2CID   31243109. Haplogroup L3 (the African clade that gave rise to the two basal non-African clades, haplogroups M and N) is 84,000 years old, and haplogroups M and N themselves are almost identical in age at 63,000 years old, with haplogroup R diverging rapidly within haplogroup N 60,000 years ago.
  5. Richards, Martin; Bandelt, Hans-Jürgen; Kivisild, Toomas; Oppenheimer, Stephen (2006). "A Model for the Dispersal of Modern Humans out of Africa". In Bandelt, Hans-Jürgen; Macaulay, Vincent; Richards, Martin (eds.). Human Mitochondrial DNA and the Evolution of Homo sapiens. Nucleic Acids and Molecular Biology. Vol. 18. pp. 225–65. doi:10.1007/3-540-31789-9_10. ISBN   978-3-540-31788-3. subclades. L3b d, L3e and L3f, for instance, are clearly of African origin, whereas haplogroup N is of apparently Eurasian origin
  6. 1 2 Gonder, M. K.; Mortensen, H. M.; Reed, F. A.; De Sousa, A.; Tishkoff, S. A. (2006). "Whole-mtDNA Genome Sequence Analysis of Ancient African Lineages". Molecular Biology and Evolution. 24 (3): 757–68. doi: 10.1093/molbev/msl209 . PMID   17194802.
  7. 1 2 Olivieri, A.; Achilli, A.; Pala, M.; Battaglia, V.; Fornarino, S.; Al-Zahery, N.; Scozzari, R.; Cruciani, F.; Behar, D. M.; Dugoujon, J.-M.; Coudray, C.; Santachiara-Benerecetti, A. S.; Semino, O.; Bandelt, H.-J.; Torroni, A. (2006). "The mtDNA Legacy of the Levantine Early Upper Palaeolithic in Africa". Science. 314 (5806): 1767–70. Bibcode:2006Sci...314.1767O. doi:10.1126/science.1135566. PMID   17170302. S2CID   3810151. The scenario of a back-migration into Africa is supported by another feature of the mtDNA phylogeny. Haplogroup M's Eurasian sister clade, haplogroup N, which has a very similar age to M and no indication of an African origin
  8. 1 2 3 Abu-Amero, Khaled K; Larruga, José M; Cabrera, Vicente M; González, Ana M (2008). "Mitochondrial DNA structure in the Arabian Peninsula". BMC Evolutionary Biology. 8 (1): 45. Bibcode:2008BMCEE...8...45A. doi: 10.1186/1471-2148-8-45 . PMC   2268671 . PMID   18269758.
  9. 1 2 Kivisild T, Rootsi S, Metspalu M, et al. (2003). "The genetic heritage of the earliest settlers persists both in Indian tribal and caste populations". American Journal of Human Genetics. 72 (2): 313–32. doi:10.1086/346068. PMC   379225 . PMID   12536373."Also, the lack of L3 lineages other than M and N in India and among non-African mitochondria in general suggests that the earliest migration(s) of modern humans already carried these two mtDNA ancestors, via a departure route over the horn of Africa."
  10. Kivisild; et al. (2007). "Genetic Evidence of Modern Human Dispersals in South Asia". The Evolution and History of Human Populations in South Asia. Springer. ISBN   9781402055621.
  11. Osman, Maha M.; et al. "Mitochondrial HVRI and whole mitogenome sequence variations portray similar scenarios on the genetic structure and ancestry of northeast Africans" (PDF). Institute of Endemic Diseases. Meta Gene. Archived from the original (PDF) on 2021-06-25. Retrieved 2021-05-17.
  12. 1 2 van Oven M, Kayser M (2009). "Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation". Human Mutation. 30 (2): E386–94. doi: 10.1002/humu.20921 . PMID   18853457. S2CID   27566749.
  13. 1 2 González, Ana M; Larruga, José M; Abu-Amero, Khaled K; Shi, Yufei; Pestano, José; Cabrera, Vicente M (2007). "Mitochondrial lineage M1 traces an early human backflow to Africa". BMC Genomics. 8: 223. doi: 10.1186/1471-2164-8-223 . PMC   1945034 . PMID   17620140.
  14. Torroni, A; Achilli, A; MacAulay, V; Richards, M; Bandelt, H (2006). "Harvesting the fruit of the human mtDNA tree". Trends in Genetics. 22 (6): 339–45. doi:10.1016/j.tig.2006.04.001. PMID   16678300.
  15. 1 2 MacAulay, V.; Hill, C; Achilli, A; Rengo, C; Clarke, D; Meehan, W; Blackburn, J; Semino, O; et al. (2005). "Single, Rapid Coastal Settlement of Asia Revealed by Analysis of Complete Mitochondrial Genomes" (PDF). Science. 308 (5724): 1034–36. Bibcode:2005Sci...308.1034M. doi:10.1126/science.1109792. PMID   15890885. S2CID   31243109.
  16. 1 2 3 Palanichamy MG, Sun C, Agrawal S, et al. (2004). "Phylogeny of mitochondrial DNA macrohaplogroup N in India, based on complete sequencing: implications for the peopling of South Asia". American Journal of Human Genetics. 75 (6): 966–78. doi:10.1086/425871. PMC   1182158 . PMID   15467980.
  17. 1 2 Maji, Suvendu; Krithika, S.; Vasulu, T. S. (2008). "Distribution of Mitochondrial DNA Macrohaplogroup N in India with Special Reference to Haplogroup R and its Sub-Haplogroup U" (PDF). International Journal of Human Genetics. 8 (1–2): 85–96. doi:10.1080/09723757.2008.11886022. S2CID   14231815.
  18. Fernández, Eva; et al. (2014). "Ancient DNA analysis of 8000 BC near eastern farmers supports an early neolithic pioneer maritime colonization of Mainland Europe through Cyprus and the Aegean Islands". PLOS Genetics. 10 (6): e1004401. doi: 10.1371/journal.pgen.1004401 . PMC   4046922 . PMID   24901650.
  19. Bekada, Asmahan; Arauna, Lara R.; Deba, Tahria; Calafell, Francesc; Benhamamouch, Soraya; Comas, David; Kayser, Manfred (24 September 2015). "Genetic Heterogeneity in Algerian Human Populations". PLOS ONE. 10 (9): e0138453. Bibcode:2015PLoSO..1038453B. doi: 10.1371/journal.pone.0138453 . PMC   4581715 . PMID   26402429.
  20. 1 2 3 "Ian Logan's mtDNA site". Archived from the original on 2011-12-09. Retrieved 2009-07-17.
  21. A. Stevanovitch; A. Gilles; E. Bouzaid; R. Kefi; F. Paris; R. P. Gayraud; J. L. Spadoni; F. El-Chenawi; E. Béraud-Colomb (January 2004). "Mitochondrial DNA Sequence Diversity in a Sedentary Population from Egypt". Annals of Human Genetics. 68 (1): 23–39. doi:10.1046/j.1529-8817.2003.00057.x. PMID   14748828. S2CID   44901197.
  22. 1 2 3 Derenko, M; Malyarchuk, B; Grzybowski, T; Denisova, G; Dambueva, I; Perkova, M; Dorzhu, C; Luzina, F; Lee, H; Vanecek, Tomas; Villems, Richard; Zakharov, Ilia (2007). "Phylogeographic Analysis of Mitochondrial DNA in Northern Asian Populations". The American Journal of Human Genetics. 81 (5): 1025–41. doi:10.1086/522933. PMC   2265662 . PMID   17924343.
  23. Lipson, Mark; Szécsényi-Nagy, Anna; Mallick, Swapan; Pósa, Annamária; Stégmár, Balázs; Keerl, Victoria; Rohland, Nadin; Stewardson, Kristin; Ferry, Matthew; Michel, Megan; Oppenheimer, Jonas; Broomandkhoshbacht, Nasreen; Harney, Eadaoin; Nordenfelt, Susanne; Llamas, Bastien; Gusztáv Mende, Balázs; Köhler, Kitti; Oross, Krisztián; Bondár, Mária; Marton, Tibor; Osztás, Anett; Jakucs, János; Paluch, Tibor; Horváth, Ferenc; Csengeri, Piroska; Koós, Judit; Sebők, Katalin; Anders, Alexandra; Raczky, Pál; Regenye, Judit; Barna, Judit P.; Fábián, Szilvia; Serlegi, Gábor; Toldi, Zoltán; Gyöngyvér Nagy, Emese; Dani, János; Molnár, Erika; Pálfi, György; Márk, László; Melegh, Béla; Bánfai, Zsolt; Domboróczki, László; Fernández-Eraso, Javier; Antonio Mujika-Alustiza, José; Alonso Fernández, Carmen; Jiménez Echevarría, Javier; Bollongino, Ruth; Orschiedt, Jörg; Schierhold, Kerstin; Meller, Harald; Cooper, Alan; Burger, Joachim; Bánffy, Eszter; Alt, Kurt W.; Lalueza-Fox, Carles; Haak, Wolfgang; Reich, David (8 November 2017). "Parallel palaeogenomic transects reveal complex genetic history of early European farmers". Nature. 551 (7680): 368–372. Bibcode:2017Natur.551..368L. doi:10.1038/nature24476. PMC   5973800 . PMID   29144465.
  24. Kılınç, Gülşah Merve; Omrak, Ayça; Özer, Füsun; Günther, Torsten; Büyükkarakaya, Ali Metin; Bıçakçı, Erhan; Baird, Douglas; Dönertaş, Handan Melike; Ghalichi, Ayshin; Yaka, Reyhan; Koptekin, Dilek; Açan, Sinan Can; Parvizi, Poorya; Krzewińska, Maja; Daskalaki, Evangelia A.; Yüncü, Eren; Dağtaş, Nihan Dilşad; Fairbairn, Andrew; Pearson, Jessica; Mustafaoğlu, Gökhan; Erdal, Yılmaz Selim; Çakan, Yasin Gökhan; Togan, İnci; Somel, Mehmet; Storå, Jan; Jakobsson, Mattias; Götherström, Anders (10 October 2016). "The Demographic Development of the First Farmers in Anatolia". Current Biology. 26 (19): 2659–2666. Bibcode:2016CBio...26.2659K. doi:10.1016/j.cub.2016.07.057. PMC   5069350 . PMID   27498567. -
  25. 1 2 Lippold, Sebastian; Xu, Hongyang; Ko, Albert; Li, Mingkun; Renaud, Gabriel; Butthof, Anne; Schröder, Roland; Stoneking, Mark (2014). "Human paternal and maternal demographic histories: insights from high-resolution Y chromosome and mtDNA sequences". Investigative Genetics. 5: 13. bioRxiv   10.1101/001792 . doi: 10.1186/2041-2223-5-13 . PMC   4174254 . PMID   25254093.
  26. "Haplogroups I & N". Ianlogan.co.uk. Retrieved 2010-07-29.
  27. Turchi, Chiara; Buscemi, Loredana; Previderè, Carlo; Grignani, Pierangela; Brandstätter, Anita; Achilli, Alessandro; Parson, Walther; Tagliabracci, Adriano; Ge.f.i., Group (2007). "Italian mitochondrial DNA database: results of a collaborative exercise and proficiency testing". International Journal of Legal Medicine. 122 (3): 199–204. doi:10.1007/s00414-007-0207-1. PMID   17952451. S2CID   11496367.{{cite journal}}: |first9= has generic name (help)
  28. "Haplogroup W". Ianlogan.co.uk. Retrieved 2010-07-29.
  29. Metspalu M, Kivisild T, Metspalu E, et al. (2004). "Most of the extant mtDNA boundaries in south and southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans". BMC Genetics. 5: 26. doi: 10.1186/1471-2156-5-26 . PMC   516768 . PMID   15339343.
  30. 1 2 3 Kong, Qing-Peng et al. 2011, Large-Scale mtDNA Screening Reveals a Surprising Matrilineal Complexity in East Asia and Its Implications to the Peopling of the Region.
  31. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Behar et al., 2012b
  32. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Soanboon, Pattanawit; Nanakorn, Somsong; Kutanan, Wibhu (June 2016). "Determination of sex difference from fingerprint ridge density in northeastern Thai teenagers". Egyptian Journal of Forensic Sciences. 6 (2): 185–193. doi: 10.1016/j.ejfs.2015.08.001 .
  33. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 YFull Haplogroup YTree v6.05.11 at 25 September 2018.
  34. 1 2 Brandão, Andreia; Eng, Ken Khong; Rito, Teresa; Cavadas, Bruno; Bulbeck, David; Gandini, Francesca; Pala, Maria; Mormina, Maru; Hudson, Bob; White, Joyce; Ko, Tsang-Ming; Saidin, Mokhtar; Zafarina, Zainuddin; Oppenheimer, Stephen; Richards, Martin B.; Pereira, Luísa; Soares, Pedro (2016). "Quantifying the legacy of the Chinese Neolithic on the maternal genetic heritage of Taiwan and Island Southeast Asia". Human Genetics. 135 (4): 363–376. doi:10.1007/s00439-016-1640-3. PMC   4796337 . PMID   26875094.
  35. 1 2 Peng, Min-Sheng; Xu, Weifang; Song, Jiao-Jiao; Chen, Xing; Sulaiman, Xierzhatijiang; Cai, Liuhong; Liu, He-Qun; Wu, Shi-Fang; Gao, Yun; Abdulloevich, Najmudinov Tojiddin; Afanasevna, Manilova Elena; Ibrohimovich, Khudoidodov Behruz; Chen, Xi; Yang, Wei-Kang; Wu, Miao; Li, Gui-Mei; Yang, Xing-Yan; Rakha, Allah; Yao, Yong-Gang; Upur, Halmurat; Zhang, Ya-Ping (29 November 2017). "Mitochondrial genomes uncover the maternal history of the Pamir populations". European Journal of Human Genetics. 26 (1): 124–136. doi:10.1038/s41431-017-0028-8. PMC   5839027 . PMID   29187735.
  36. 1 2 3 4 Derenko, Miroslava; Malyarchuk, Boris; Denisova, Galina; Perkova, Maria; Rogalla, Urszula; Grzybowski, Tomasz; Khusnutdinova, Elza; Dambueva, Irina; Zakharov, Ilia (21 February 2012). "Complete Mitochondrial DNA Analysis of Eastern Eurasian Haplogroups Rarely Found in Populations of Northern Asia and Eastern Europe". PLOS ONE. 7 (2): e32179. Bibcode:2012PLoSO...732179D. doi: 10.1371/journal.pone.0032179 . PMC   3283723 . PMID   22363811.
  37. 1 2 3 Hwan Young Lee, Ji-Eun Yoo, Myung Jin Park, Ukhee Chung, Chong-Youl Kim, and Kyoung-Jin Shin, "East Asian mtDNA haplogroup determination in Koreans: Haplogroup-level coding region SNP analysis and subhaplogroup-level control region sequence analysis." Electrophoresis (2006). doi : 10.1002/elps.200600151.
  38. Duong, Nguyen Thuy; Macholdt, Enrico; Ton, Nguyen Dang; Arias, Leonardo; Schröder, Roland; Van Phong, Nguyen; Thi Bich Thuy, Vo; Ha, Nguyen Hai; Thi Thu Hue, Huynh; Thi Xuan, Nguyen; Thi Phuong Oanh, Kim; Hien, Le Thi Thu; Hoang, Nguyen Huy; Pakendorf, Brigitte; Stoneking, Mark; Van Hai, Nong (3 August 2018). "Complete human mtDNA genome sequences from Vietnam and the phylogeography of Mainland Southeast Asia". Scientific Reports. 8 (1): 11651. Bibcode:2018NatSR...811651D. doi:10.1038/s41598-018-29989-0. PMC   6076260 . PMID   30076323.
  39. "Haplogroup Y". Ianlogan.co.uk. 2009-09-22. Retrieved 2010-07-29.
  40. Wibhu Kutanan, Rasmi Shoocongdej, Metawee Srikummool, et al. (2020), "Cultural variation impacts paternal and maternal genetic lineages of the Hmong-Mien and Sino-Tibetan groups from Thailand." European Journal of Human Genetics. https://doi.org/10.1038/s41431-020-0693-x
  41. 1 2 3 4 5 Y-DNA D Haplogroup Project at Family Tree DNA
  42. Hongbin Yao, Mengge Wang, Xing Zou, et al., "New insights into the fine-scale history of western-eastern admixture of the northwestern Chinese population in the Hexi Corridor via genome-wide genetic legacy." Mol Genet Genomics 2021 Mar 1. doi: 10.1007/s00438-021-01767-0.
  43. Gunnarsdóttir, Ellen et al. 2010, High-throughput sequencing of complete human mtDNA genomes from the Philippines
  44. "Hudjashov". Ianlogan.co.uk. Retrieved 2010-07-29.
  45. Pierson MJ, Martinez-Arias R, Holland BR, Gemmell NJ, Hurles ME, Penny D (2006). "Deciphering past human population movements in Oceania: provably optimal trees of 127 mtDNA genomes". Molecular Biology and Evolution. 23 (10): 1966–75. doi:10.1093/molbev/msl063. PMC   2674580 . PMID   16855009.
  46. Hill, C.; Soares, P.; Mormina, M.; MacAulay, V.; Meehan, W.; Blackburn, J.; Clarke, D.; Raja, J. M.; Ismail, P.; Bulbeck, D.; Oppenheimer, S.; Richards, M. (2006). "Phylogeography and Ethnogenesis of Aboriginal Southeast Asians". Molecular Biology and Evolution. 23 (12): 2480–91. doi: 10.1093/molbev/msl124 . hdl: 1885/23220 . PMID   16982817.
  47. Rieux, Adrien; Eriksson, Anders; Li, Mingkun; et al. (2014). "Improved Calibration of the Human Mitochondrial Clock Using Ancient Genomes". Mol Biol Evol. 31 (10): 2780–92. doi:10.1093/molbev/msu222. PMC   4166928 . PMID   25100861.
  48. "Haplogroup A". Ianlogan.co.uk. Retrieved 2010-07-29.
  49. "Haplogroup S". Ianlogan.co.uk. Retrieved 2010-07-29.
  50. "Haplogroup X". Ianlogan.co.uk. Retrieved 2010-07-29.
  51. "Haplogroup R*". Ianlogan.co.uk. Retrieved 2010-07-29.