Haplogroup C | |
---|---|
Possible time of origin | 36,473.3 (SD 7392.0) years [1] |
Coalescence age | 27,370 (95% CI 19,550 <-> 35,440) ybp [2] 23,912.2 (SD 4780.8) years [1] 21,700 (95% CI 19,200 <-> 24,400) ybp [3] |
Possible place of origin | East Asia [4] |
Ancestor | CZ |
Descendants | C1, C4, C5, C7 |
Defining mutations | 489 10400 14783 15043 [5] |
In human mitochondrial genetics, Haplogroup C is a human mitochondrial DNA (mtDNA) haplogroup.
Haplogroup C is believed to have arisen in East Asia [4] some 24,000 years before present. It is a descendant of the haplogroup M. Haplogroup C shares six mutations downstream of the MRCA of haplogroup M with haplogroup Z and five mutations downstream of the MRCA of haplogroup M with other members of haplogroup M8. This macro-haplogroup is known as haplogroup M8'CZ or simply as haplogroup M8.
Haplogroup C is found in Northeast Asia [6] (including Siberia) and the Americas. In Eurasia, Haplogroup C is especially frequent among populations of arctic Siberia, such as Nganasans, Dolgans, Yakuts, Evenks, Evens, Yukaghirs, and Koryaks. [7] [8] [9] Haplogroup C is one of five mtDNA haplogroups found in the indigenous peoples of the Americas, [6] the others being A, B, D, and X. The subclades C1b, C1c, C1d, and C4c are found in the first people of the Americas. C1a is found only in Asia.
In 2010, Icelandic researchers discovered C1e lineage in their home country, estimating an introduction date of year 1700 AD or earlier, indicating a possible introduction during the Viking expeditions to the Americas. A Native American origin for this C1e lineage is likely, but the researchers note that a European or Asian one cannot be ruled out. [10] [11] [12]
In 2014, a study discovered a new mtDNA subclade C1f from the remains of 3 people found in north-western Russia and dated to 7,500 years ago. It has not been detected in modern populations. The study proposed the hypothesis that the sister C1e and C1f subclades had split early from the most recent common ancestor of the C1 clade and had evolved independently. Subclade C1e had a northern European origin. Iceland was settled by the Vikings 1,130 years ago and they had raided heavily into western Russia, where the sister subclade C1f is now known to have resided. They proposed that both subclades were brought to Iceland through the Vikings, however C1e went extinct on mainland northern Europe due to population turnover and its small representation, and subclade C1f went extinct completely. [13]
In 2015, a study conducted in the Aconcagua mummy identified its mtDNA lineage belongs to the subclade C1bi, which contains 10 distinct mutations from C1b. [14]
Population | Frequency | Count | Source | Subtypes |
---|---|---|---|---|
Evenks (Stony Tunguska) | 0.769 | 39 | Duggan 2013 | C4a2=7, C4a1c=6, C4b1=5, C5d1=4, C4b=3, C4b3=3, C4a1c1a=1, C5b1b=1 |
Evenk | 0.718 | 71 | Starikovskaya 2005 | C(xC1, C5)=41, C5=10 |
Yukaghir | 0.670 | 100 | Volodko 2008 | C(xC1, C5)=54, C5=13 |
Evenk (East) | 0.644 | 45 | Derenko 2007 | C(xC1, C5)=17, C5=12 |
Tofalar | 0.621 | 58 | Derenko 2003 | C(xC1, C5)=31, C5=5 |
Evens (Sebjan) | 0.556 | 18 | Duggan 2013 | C4b=6, C4a1c=3, C5b1b=1 |
Yukaghirs | 0.550 | 20 | Duggan 2013 | C4a1c=4, C4b3a=2, C4b7=2, C4a2=1, C5a2=1, C5d1=1 |
Yukaghirs (Yakutia) | 0.545 | 22 | Fedorova 2013 | C4b3a=5, C5d1=3, C4a1c=1, C4a2=1, C4b1=1, C5a2a=1 |
Evens (Tompo) | 0.519 | 27 | Duggan 2013 | C4a1c=6, C4a2=3, C4b=2, C4b1=2, C5d1=1 |
Nganasans | 0.513 | 39 | Volodko 2008 | C(xC1, C5)=12, C5=8 |
Tozhu Tuvans | 0.479 | 48 | Derenko 2003 | C(xC1, C5)=16, C5=7 |
Evenks (Yakutia) | 0.472 | 125 | Fedorova 2013 | C4b1=13, C4a1c=11, C4b9=9, C4a2=8, C4b=5, C5b1b=4, C5a2=3, C5d1=2, C4a1=1, C4a1d=1, C4b3a=1, C5a1=1 |
Tuvans | 0.472 | 231 | [ citation needed ] | C(xC1, C5)=88, C5=21 |
Yakut | 0.469 | 254 | [ citation needed ] | C(xC1, C5)=95, C5=24 |
Evens (Berezovka) | 0.467 | 15 | Duggan 2013 | C4b3a=4, C4b=1, C4b1=1, C4b7=1 |
Evenk (West) | 0.466 | 73 | Derenko 2007 | C(xC1, C5)=29, C5=5 |
Evenks (Taimyr) | 0.458 | 24 | Duggan 2013 | C4a1c=5, C4b1=4, C4a1c1a=1, C4a2=1 |
Yakut (Central) | 0.457 | 164 | Fedorova 2013 | C4a1c=16, C4a2=14, C5b1b=13, C4b1=8, C4a1d=7, C4b=4, C4b1a=3, C5a1=3, C4a1=2, C5b1a=2, C4b3a=1, C5a2=1, C7a1c=1 |
Evens (Yakutia) | 0.457 | 105 | Fedorova 2013 | C4a1c=15, C5d1=11, C4a2=4, C4b3a=3, C4b1=2, C4b7=2, C4b9=2, C4b=2, C5a1=2, C7a1c=2, C4b1a=1, C4b2=1, C5a2a=1 |
Evenks (Nyukzha) | 0.413 | 46 | Fedorova 2013 | C4a2=10, C4b1=3, C4a1c=2, C4a1d=1, C4b1a=1, C5a2=1, C7a1c=1 |
Yakut (Northern) | 0.405 | 148 | Fedorova 2013 | C4a1c=17, C4b1=16, C4a2=11, C5b1a=4, C5b1b=4, C4b9=3, C4b=2, C5a1=2, C5d1=1 |
Koryaks | 0.400 | 15 | Duggan 2013 | C4b=3, C5a2=3 |
Dolgans | 0.390 | 154 | Fedorova 2013 | C4a1c=33, C4b1=9, C5b1b=5, C4b3a=3, C4a2=2, C4b1a=2, C5b1a=2, C4b8=1, C4b=1, C5d1=1, C7a1c=1 |
Even | 0.377 | 191 | [ citation needed ] | C(xC1, C5)=50, C5=22 |
Koryak | 0.368 | 182 | [ citation needed ] | C(xC1, C5)=39, C5=28 |
Yakut (Vilyuy) | 0.360 | 111 | Fedorova 2013 | C4a1c=14, C4a2=10, C4b=5, C4b1=4, C4b1a=2, C5a2=2, C5b1b=2, C4a1=1 |
Evens (Kamchatka) | 0.333 | 39 | Duggan 2013 | C4b1=6, C4b3a=3, C4a1c=2, C5a2=1, C5d1=1 |
Altai-Kizhi | 0.322 | 90 | Derenko 2007 | C(xC1, C5)=21, C5=8 |
Chuvantsi | 0.313 | 32 | Volodko 2008 | C(xC1, C5)=10 |
Oroqen | 0.295 | 44 | Kong 2003 | C(xC1, C5)=9, C5=4 |
Teleut | 0.283 | 53 | Derenko 2007 | C(xC1, C5)=11, C5=4 |
Evens (Sakkyryyr) | 0.261 | 23 | Duggan 2013 | C4a1c=2, C4b=2, C4a1d=1, C4b1=1 |
Udegey | 0.226 | 31 | Duggan 2013 | C4b1=6, C4a1d=1 |
Mongolian (Ulaanbaatar) | 0.213 | 47 | Jin 2009 | C=10 |
Buryat | 0.212 | 419 | [ citation needed ] | C(xC1, C5)=66, C1=3, C5=20 |
Khakassian | 0.208 | 110 | Derenko 2003 | C(xC1, C5)=28, C5=2 |
Barghut | 0.201 | 149 | [ citation needed ] | C4a1a1=6, C4a1a2=3, C4a1b2=3, C4a2a1=2, C4b1a=2, C4b1=2, C4=2, C5b=2, C4a1a=1, C4a1a1a2=1, C4a1a2a2=1, C4a2a2=1, C5a1=1, C5a2=1, C5b1a=1, C7=1 |
Tubalar | 0.194 | 72 | Starikovskaya 2005 | C(xC1, C5)=12, C5=2 |
Altaian | 0.191 | 110 | Derenko 2003 | C(xC1, C5)=21 |
Evenks (Iengra) | 0.190 | 21 | Duggan 2013 | C4a2=2, C4b1=1, C5a2=1 |
Udege | 0.174 | 46 | Starikovskaya 2005 | C(xC1, C5)=8 |
Mongolian (Ulaanbaatar) | 0.170 | 47 | Derenko 2007 | C4=4, C*(xC1,C4,C5)=3, C5=1 |
Telenghit | 0.169 | 71 | Derenko 2007 | C(xC1, C5)=10, C5=2 |
Mongolian | 0.153 | 150 | [ citation needed ] | C(xC1, C5)=18, C1=2, C5=3 |
Negidal | 0.152 | 33 | Starikovskaya 2005 | C(xC1, C5)=3, C5=2 |
Kyrgyz (Kyzylsu) | 0.145 | 138 | [ citation needed ] | C=20 |
Kyrgyz | 0.140 | 200 | [ citation needed ] | C(xC1, C5)=18, C1=1, C5=9 |
Ulch | 0.138 | 87 | [ citation needed ] | C(xC1, C5)=6, C1=1, C5=5 |
Turkmen | 0.135 | 178 | [ citation needed ] | C(xC1, C5)=14, C5=10 |
Chukchi | 0.132 | 417 | [ citation needed ] | C(xC1, C5)=27 C5=28 |
Kazakh (Xinjiang) | 0.132 | 53 | Yao 2004 | C(xC1, C5)=5 C5=2 |
Itelmen | 0.130 | 46 | Schurr 1999 | C5=6 |
Shor | 0.122 | 82 | Derenko 2007 | C(xC1, C5)=9 C5=1 |
Orok | 0.115 | 61 | Bermisheva 2005 | C1=7 |
Kyrgyz (Taxkorgan) | 0.103 | 68 | Peng 2017 | C4=6, C5=1 |
Thai | 0.100 | 40 | Jin 2009 | C=4 |
Nanai | 0.094 | 85 | Tamm 2007 | C(xC1, C5)=5, C1=1, C5=2 |
Kazakh | 0.086 | 511 | [ citation needed ] | C(xC1, C5)=32, C1=4, C5=8 |
Mongolian (Inner Mongolia) | 0.083 | 97 | [ citation needed ] | C(xC1, C5)=5 |
Altaian (Kazakhstan) | 0.082 | 98 | [ citation needed ] | C(xC1, C5)=8 |
Kyrgyz (Artux) | 0.074 | 54 | Peng 2017 | C4=4 |
Tajik | 0.073 | 82 | Derenko 2007 | C(xC1, C5)=6 |
Sarikoli | 0.070 | 86 | Peng 2017 | C4a1a+A14878G=2, C4a1=2, C4b1=1, C4+T152C!+T4742C+T8602C=1 |
Daur | 0.066 | 45 | Kong 2003 | C(xC1, C5)=2, C1=1 |
Uyghur (Xinjiang) | 0.064 | 47 | Yao 2004 | C(xC1, C5)=3 |
Uzbek | 0.061 | 130 | Quintana-Murci 2004 | C(xC1, C5)=6, C5=2 |
Vietnamese | 0.048 | 42 | Jin 2009 | C=2 |
Han Chinese | 0.045 | 1930 | [ citation needed ] | C(xC1, C5)=72, C5=15 |
Thai | 0.034 | 552 | [ citation needed ] | C(xC1, C5)=19 |
Korean (mostly Ulsan) | 0.030 | 1094 | [ citation needed ] | C=33 |
Manchu | 0.025 | 40 | Jin 2009 | C=1 |
Korean | 0.024 | 694 | [ citation needed ] | C=17 |
Korean (China) | 0.020 | 51 | Jin 2009 | C=1 |
Korean (Korea) | 0.016 | 185 | Jin 2009 | C=3 |
Korean | 0.015 | 537 | Tanaka 2004 | C5=4, C(xC1,C5)=4 |
Korean | 0.010 | 103 | Derenko 2007 | C(xC1,C4,C5)=1 |
Eskimo | 0.008 | 254 | [ citation needed ] | C(xC1, C5)=2 |
Japanese | 0.005 | 1312 | Tanaka 2004 | C1=4, C5=1, C(xC1,C5)=1 |
Japanese (Tokyo) | 0.000 | 118 | Zheng 2011 | - |
Ainu | 0.000 | 51 | [ citation needed ] | - |
Nivkh | 0.000 | 38 | Duggan 2013 | - |
Han (Beijing) | 0.000 | 40 | Jin 2009 | - |
Nivkh | 0.000 | 56 | Starikovskaya 2005 | - |
This phylogenetic tree of haplogroup C subclades is based on the paper by Mannis van Oven and Manfred Kayser Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation [5] and subsequent published research.
Phylogenetic tree of human mitochondrial DNA (mtDNA) haplogroups | |||||||||||||||||||||||||||||||||||||||
Mitochondrial Eve (L) | |||||||||||||||||||||||||||||||||||||||
L0 | L1–6 | ||||||||||||||||||||||||||||||||||||||
L1 | L2 | L3 | L4 | L5 | L6 | ||||||||||||||||||||||||||||||||||
M | N | ||||||||||||||||||||||||||||||||||||||
CZ | D | E | G | Q | O | A | S | R | I | W | X | Y | |||||||||||||||||||||||||||
C | Z | B | F | R0 | pre-JT | P | U | ||||||||||||||||||||||||||||||||
HV | JT | K | |||||||||||||||||||||||||||||||||||||
H | V | J | T |
Haplogroup M is a human mitochondrial DNA (mtDNA) haplogroup. An enormous haplogroup spanning all the continents, the macro-haplogroup M, like its sibling the macro-haplogroup N, is a descendant of the haplogroup L3.
Haplogroup K, formerly Haplogroup UK, is a human mitochondrial DNA (mtDNA) haplogroup. It is defined by the HVR1 mutations 16224C and 16311C. It is now known that K is a subclade of U8.
Haplogroup J is a human mitochondrial DNA (mtDNA) haplogroup. The clade derives from the haplogroup JT, which also gave rise to haplogroup T. Within the field of medical genetics, certain polymorphisms specific to haplogroup J have been associated with Leber's hereditary optic neuropathy.
Haplogroup HV is a human mitochondrial DNA (mtDNA) haplogroup.
Haplogroup U is a human mitochondrial DNA haplogroup (mtDNA). The clade arose from haplogroup R, likely during the early Upper Paleolithic. Its various subclades are found widely distributed across Northern and Eastern Europe, Central, Western and South Asia, as well as North Africa, the Horn of Africa, and the Canary Islands.
In human mitochondrial genetics, haplogroup B is a human mitochondrial DNA (mtDNA) haplogroup.
Haplogroup F is a human mitochondrial DNA (mtDNA) haplogroup. The clade is most common in East Asia and Southeast Asia. It has not been found among Native Americans.
Haplogroup N is a human mitochondrial DNA (mtDNA) clade. A macrohaplogroup, its descendant lineages are distributed across many continents. Like its sibling macrohaplogroup M, macrohaplogroup N is a descendant of the haplogroup L3.
In human mitochondrial genetics, Haplogroup A is a human mitochondrial DNA (mtDNA) haplogroup.
In human mitochondrial genetics, Haplogroup D is a human mitochondrial DNA (mtDNA) haplogroup. It is a descendant haplogroup of haplogroup M, thought to have arisen somewhere in East Asia, between roughly 60,000 and 35,000 years ago.
In human mitochondrial genetics, Haplogroup Z is a human mitochondrial DNA (mtDNA) haplogroup.
Haplogroup C is a major Y-chromosome haplogroup, defined by UEPs M130/RPS4Y711, P184, P255, and P260, which are all SNP mutations. It is one of two primary branches of Haplogroup CF alongside Haplogroup F. Haplogroup C is found in ancient populations on every continent except Africa and is the predominant Y-DNA haplogroup among males belonging to many peoples indigenous to East Asia, Central Asia, Siberia, North America and Australia as well as a some populations in Europe, the Levant, and later Japan.
Haplogroup N (M231) is a Y-chromosome DNA haplogroup defined by the presence of the single-nucleotide polymorphism (SNP) marker M231.
Tungusic peoples are an ethnolinguistic group formed by the speakers of Tungusic languages. They are native to Siberia, China, and Mongolia.
Haplogroup C-M217, also known as C2, is a Y-chromosome DNA haplogroup. It is the most frequently occurring branch of the wider Haplogroup C (M130). It is found mostly in Central Asia, Eastern Siberia and significant frequencies in parts of East Asia and Southeast Asia including some populations in the Caucasus, Middle East, South Asia, East Europe. It is found in a much more widespread area with a low frequency of less than 2%.
In human mitochondrial genetics, Haplogroup Y is a human mitochondrial DNA (mtDNA) haplogroup.
In human mitochondrial genetics, Haplogroup G is a human mitochondrial DNA (mtDNA) haplogroup.
Haplogroup H is a human mitochondrial DNA (mtDNA) haplogroup. The clade is believed to have originated in Southwest Asia, near present day Syria, around 20,000 to 25,000 years ago. Mitochondrial haplogroup H is today predominantly found in Europe, and is believed to have evolved before the Last Glacial Maximum (LGM). It first expanded in the northern Near East and Southern Caucasus, and later migrations from Iberia suggest that the clade reached Europe before the Last Glacial Maximum. The haplogroup has also spread to parts of Africa, Siberia and Inner Asia. Today, around 40% of all maternal lineages in Europe belong to haplogroup H.
Haplogroup C-M48 also known as C2b1a2 is a Y-chromosome DNA haplogroup.
In human mitochondrial genetics, Haplogroup M8 is a human mitochondrial DNA (mtDNA) haplogroup.