Haplogroup C-M130

Last updated
Haplogroup C
Haplogroup C (Y-DNA) 2017.png
Possible time of origin53,000 years BP
Possible place of origin Southwest Asia, via out-of-Africa migrations [1] [2] [3]
Ancestor CF
Descendants C1 F3393/Z1426 (previously CxC3)
C2 (previously C3*) M217 [4]
Defining mutationsM130/RPS4Y711, P184, P255, P260

Haplogroup C is a major Y-chromosome haplogroup, defined by UEPs M130/RPS4Y711, P184, P255, and P260, which are all SNP mutations. It is one of two primary branches of Haplogroup CF alongside Haplogroup F. Haplogroup C is found in ancient populations on every continent except Africa and is the predominant Y-DNA haplogroup among males belonging to many peoples indigenous to East Asia, Central Asia, Siberia, North America and Australia as well as a some populations in Europe, the Levant, and later Japan. [1]

Contents

The haplogroup is also found with moderate to low frequency among many present-day populations of Southeast Asia, South Asia, and Southwest Asia.

In addition to the basal paragroup C*, this haplogroup now has two major branches: C1 (F3393/Z1426; previously CxC3, i.e. old C1, old C2, old C4, old C5 and old C6) and C2 (M217; the former C3).

Origins

Haplogroup C-M130 likely originates from an exodus of modern humans out of Africa, which spread east from Southwest Asia and gradually colonized South Asia, East Asia and Oceania. Research is divided as to how this migration took place; most studies support a Northern Route through Siberia while others support a Southern Route hypothesis, in which the carriers of haplogroup C migrated along the coasts of India and Southeast Asia to get to China. [2]

Haplogroup C-M130 seems to have come into existence shortly after SNP mutation M168 occurred for the first time, bringing the modern Haplogroup CT into existence, from which Haplogroup CF, and in turn Haplogroup C, derived. This was probably at least 60,000 years ago.

Haplogroup C-M130 attains its highest frequencies among the indigenous populations of Kazakhstan, Mongolia, the Russian Far East, Polynesia, certain groups of Australia, and at moderate frequency in Korea and Manchu people. It is therefore hypothesized that Haplogroup C-M130 either originated or underwent its longest period of evolution in the greater Central Asian region or in Southeast Asian regions. Its expansion in East Asia is suggested to have started approximately 40,000 years ago. [2]

Males carrying C-M130 are believed to have migrated to the Americas some 6,000-8,000 years ago, and was carried by Na-Dené-speaking peoples into the northwest Pacific coast of North America.

Asia is also the area in which Haplogroup D-M174 is concentrated. However, D-M174 is more closely related to haplogroup E than to C-M130 and the geographical distributions of Haplogroups C-M130 and D-M174 are entirely and utterly different, with various subtypes of Haplogroup C-M130 being found at high frequency amongst modern Kazakhs and Mongolians as well as in some Indigenous peoples of the Americas, Manchurians. It is also found at a medium frequency in Koreans, indigenous inhabitants of the Russian Far East, certain Aboriginal Australians groups and at moderate frequencies elsewhere throughout Asia and Oceania. Carriers of Haplogroup C among the later Jōmon people of Japan and certain Paleolithic and Neolithic Europeans carried C1a, C1b, and C1a2. Whereas Haplogroup D is found at high frequencies only amongst Tibetans, Japanese peoples, and Andaman Islanders, and has been found neither in India nor among the aboriginal inhabitants of the Americas or Oceania. [1]

According to Sakitani et al., haplogroup C-M130 originated in Central Asia and spread from there into other parts of Eurasia and into parts of Australia. It is suggested that C-M130 was found in Eastern Eurasian hunter gatherers as well as in ancient samples of East and Southeast Asia and Europe. [1]

Structure

C* (M130/Page51/RPS4Y711, M216)

(The above phylogenetic structure of haplogroup C-M130 subclades is based on the ISOGG 2015 tree, YCC 2008 tree and subsequent published research. [7] [8] )

Distribution

Projected spatial frequency distribution for haplogroup C in East Asia. Geographic distributions of Y chromosome haplogroups C in East Asia.png
Projected spatial frequency distribution for haplogroup C in East Asia.

The distribution of Haplogroup C-M130 is generally limited to populations of Siberia, parts of East Asia, Oceania, and the Americas. Due to the tremendous age of Haplogroup C, numerous secondary mutations have had time to accumulate, and many regionally important subbranches of Haplogroup C-M130 have been identified.

Up to 46% of Aboriginal Australian males carried either basal C* (C-M130*), C1b2b* (C-M347*) or C1b2b1 (C-M210), before contact with and significant immigration by Europeans, according to a 2015 study by Nagle et al. [10] That is, 20.0% of the Y-chromosomes of 657 modern individuals, before 56% of those samples were excluded as "non-indigenous". C-M130* was apparently carried by up to 2.7% of Aboriginal males before colonisation; 43% carried C-M347, which has not been found outside Australia. The other haplogroups of Aboriginal Australians is similar to Papuans and other Negritos (Haplogroup S-M230 and M-P256). [10] [11]

Low levels of C-M130* are carried by males:

Basal C1a* (CTS11043) was found in an Upper Paleolithic Europeans (Aurignacians), GoyetQ116-1 and Pestera Muerii2. [13]

C1b was identified in prehistoric remains, dating from 34,000 years BP, found in Russia and known as "Kostenki 14". [14]

Haplogroup C2 (M217) – the most numerous and widely dispersed C lineage – was once believed to have originated in Central Asia, spread from there into Northern Asia and the Americas while other theory it originated from East Asia. [7] C-M217 stretches longitudinally from Central Europe and Turkey, to the Wayuu people of Colombia and Venezuela, and latitudinally from the Athabaskan peoples of Alaska to Vietnam to the Malay Archipelago. Found at low concentrations in Eastern Europe, where it may be a legacy of the invasions/migrations of the Huns, Turks and/or Mongols during the Middle Ages. Found at especially high frequencies in Buryats, Daurs, Hazaras, Itelmens, Kalmyks, Koryaks, Manchus, Mongolians, Oroqens, and Sibes, with a moderate distribution among other Tungusic peoples, Koreans, Ainus, Nivkhs, Altaians, Tuvinians, Uzbeks, Han Chinese, Tujia, Hani, and Hui. [15] [16] [17] [18] [19] [20] [21] The highest frequencies of Haplogroup C-M217 are found among the populations of Mongolia and Far East Russia, where it is the modal haplogroup. Haplogroup C-M217 is the only variety of Haplogroup C-M130 to be found among Native Americans, among whom it reaches its highest frequency in Na-Dené populations. It would also make sense that this lineage may have originated in the Americas as that is the only Variety found amongst the aboriginal population.

Other subclades are specific to certain populations, within a restricted geographical range; even where these other branches are found, they tend to appear as a very low-frequency, minor component of the palette of Y-chromosome diversity within those territories:

Phylogenetics

Phylogenetic history

Prior to 2002, there were in academic literature at least seven naming systems for the Y-Chromosome Phylogenetic tree. This led to considerable confusion. In 2002, the major research groups came together and formed the Y-Chromosome Consortium (YCC). They published a joint paper that created a single new tree that all agreed to use. The table below brings together all of these works at the point of the landmark 2002 YCC Tree. This allows a researcher reviewing older published literature to quickly move between nomenclatures.

YCC 2002/2008 (Shorthand)(α)(β)(γ)(δ)(ε)(ζ)(η)YCC 2002 (Longhand)YCC 2005 (Longhand)YCC 2008 (Longhand)YCC 2010r (Longhand)ISOGG 2006ISOGG 2007ISOGG 2008ISOGG 2009ISOGG 2010ISOGG 2011ISOGG 2012
C-M21610V1F16Eu6H1CC*CCCCCCCCCC
C-M8 10V1F19Eu6H1CC1C1C1C1C1C1C1C1C1C1C1
C-M38 10V1F16Eu6H1CC2*C2C2C2C2C2C2C2C2C2C2
C-P33 10V1F18Eu6H1CC2aC2aC2a1C2a1C2aC2aC2a1C2a1C2a1removedremoved
C-P44 10V1F17Eu6H1CC3*C3C3C3C3C3C3C3C3C3C3
C-M93 10V1F17Eu6H1CC3aC3aC3aC3aC3aC3aC3aC3aC3aC3aC3a1
C-M208 10V1F17Eu6H1CC3bC2bC2aC2aC2bC2bC2aC2aC2aC2aC2a
C-M210 36V1F17Eu6H1CC3cC2cC4aC4aC4bC4bC4aC4aC4aC4aC4a

Research publications

The following research teams per their publications were represented in the creation of the YCC Tree.

Notable members

One particular haplotype within Haplogroup C-M217 has received a great deal of attention for the possibility that it may represent direct patrilineal descent from Genghis Khan.

A research paper published in 2017 - "Genetic trail for the early migrations of Aisin Gioro, the imperial house of the Qing dynasty" confirmed that the Aisin Gioro clan belongs to haplogroup C3b1a3a2-F8951, a brother branch of C3*-Star Cluster (currently named as C3b1a3a1-F3796, once linked to Genghis Khan). [42]

See also

Genetics

Y-DNA C Subclades

Y-DNA backbone tree

Related Research Articles

<span class="mw-page-title-main">Haplogroup J-M172</span> Human Y-chromosome DNA haplogroup

In human genetics, Haplogroup J-M172 or J2 is a Y-chromosome haplogroup which is a subclade (branch) of haplogroup J-M304. Haplogroup J-M172 is common in modern populations in Western Asia, Central Asia, South Asia, Southern Europe, Northwestern Iran and North Africa. It is thought that J-M172 may have originated in the Caucasus, Anatolia and/or Western Iran.

<span class="mw-page-title-main">Haplogroup J (Y-DNA)</span> Human Y-chromosome DNA haplogroup

Haplogroup J-M304, also known as J, is a human Y-chromosome DNA haplogroup. It is believed to have evolved in Western Asia. The clade spread from there during the Neolithic, primarily into North Africa, the Horn of Africa, the Socotra Archipelago, the Caucasus, Europe, Anatolia, Central Asia, South Asia, and Southeast Asia.

Haplogroup D1 or D-M174 is a subclade of haplogroup D-CTS3946. This male haplogroup is found primarily in East Asia, Magar-ethnic Nepal and the Andaman Islands. It is also found regularly with lower frequency in Central Asia, Siberia and Mainland Southeast Asia, and, more rarely, in Europe and the Middle East.

<span class="mw-page-title-main">Haplogroup E-M96</span> Human Y chromosome DNA grouping indicating common ancestry

Haplogroup E-M96 is a human Y-chromosome DNA haplogroup. It is one of the two main branches of the older and ancestral haplogroup DE, the other main branch being haplogroup D. The E-M96 clade is divided into two main subclades: the more common E-P147, and the less common E-M75.

<span class="mw-page-title-main">Haplogroup L-M20</span> Human Y chromosome DNA grouping common in South Asia and the Mediterranean

Haplogroup L-M20 is a human Y-DNA haplogroup, which is defined by SNPs M11, M20, M61 and M185. As a secondary descendant of haplogroup K and a primary branch of haplogroup LT, haplogroup L currently has the alternative phylogenetic name of K1a, and is a sibling of haplogroup T.

<span class="mw-page-title-main">Haplogroup M-P256</span> Human Y chromosome DNA grouping common in New Guinea

Haplogroup M, AKA M-P256 and Haplogroup K2b1b is a Y-chromosome DNA haplogroup. M-P256 is a descendant haplogroup of Haplogroup K2b1, and is believed to have first appeared between 32,000 to 47,000 years ago.

<span class="mw-page-title-main">Haplogroup Q-M242</span> Human Y chromosome DNA grouping common among Native Americans

Haplogroup Q or Q-M242 is a Y-chromosome DNA haplogroup. It has one primary subclade, Haplogroup Q1 (L232/S432), which includes numerous subclades that have been sampled and identified in males among modern populations.

<span class="mw-page-title-main">Human Y-chromosome DNA haplogroup</span> Human DNA groupings

In human genetics, a human Y-chromosome DNA haplogroup is a haplogroup defined by specific mutations in the non-recombining portions of DNA on the male-specific Y chromosome (Y-DNA). Individuals within a haplogroup share similar numbers of short tandem repeats (STRs) and single-nucleotide polymorphisms (SNPs). The Y-chromosome accumulates approximately two mutations per generation, and Y-DNA haplogroups represent significant branches of the Y-chromosome phylogenetic tree, each characterized by hundreds or even thousands of unique mutations.

<span class="mw-page-title-main">Haplogroup R (Y-DNA)</span> Human Y-chromosome DNA haplogroup

Haplogroup R, or R-M207, is a Y-chromosome DNA haplogroup. It is both numerous and widespread among modern populations.

In human genetics, Haplogroup O-M119 is a Y-chromosome DNA haplogroup. Haplogroup O-M119 is a descendant branch of haplogroup O-F265 also known as O1a, one of two extant primary subclades of Haplogroup O-M175. The same clade previously has been labeled as O-MSY2.2.

<span class="mw-page-title-main">Haplogroup C-M217</span> Human Y-chromosome DNA haplogroup

Haplogroup C-M217, also known as C2, is a Y-chromosome DNA haplogroup. It is the most frequently occurring branch of the wider Haplogroup C (M130). It is found mostly in Central Asia, Eastern Siberia and significant frequencies in parts of East Asia and Southeast Asia including some populations in the Caucasus, Middle East, South Asia, East Europe. It is found in a much more widespread area with a low frequency of less than 2%.

<span class="mw-page-title-main">Haplogroup DE</span> Human Y chromosome DNA grouping indicating common ancestry

Haplogroup DE is a human Y-chromosome DNA haplogroup. It is defined by the single nucleotide polymorphism (SNP) mutations, or UEPs, M1(YAP), M145(P205), M203, P144, P153, P165, P167, P183. DE is unique because it is distributed in several geographically distinct clusters. An immediate subclade, haplogroup D, is mainly found in East Asia, parts of Central Asia, and the Andaman Islands, but also sporadically in West Africa and West Asia. The other immediate subclade, haplogroup E, is common in Africa, and to a lesser extent the Middle East and southern Europe.

<span class="mw-page-title-main">Haplogroup CT</span> Human Y chromosome DNA grouping indicating common ancestry

Haplogroup CT is a human Y chromosome haplogroup. CT has two basal branches, CF and DE. DE is divided into a predominantly Asia-distributed haplogroup D-CTS3946 and a predominantly Africa-distributed haplogroup E-M96, while CF is divided into an East Asian, Native American, and Oceanian haplogroup C-M130 and haplogroup F-M89, which dominates most non-African populations.

<span class="mw-page-title-main">Haplogroup CF</span> Human Y chromosome DNA grouping indicating common ancestry

Haplogroup CF, also known as CF-P143 and CT(xDE), is a human Y-chromosome DNA haplogroup. CF is defined by the SNP P143, and its existence and distribution are inferred from the fact that haplogroups descended from CF include most human male lineages in Eurasia, Oceania, and The Americas. CF descends from CT (CT-M168), and is the sibling of DE. CF has two basal branches, Haplogroup C and Haplogroup F.

<span class="mw-page-title-main">Haplogroup S-M230</span> Human Y-chromosome DNA haplogroup

Haplogroup S-M230, also known as S1a1b, is a Y-chromosome DNA haplogroup. It is by far the most numerically significant subclade of Haplogroup S1a.

Haplogroup E-M75 is a human Y-chromosome DNA haplogroup. Along with haplogroup E-P147, it is one of the two main branches of the older haplogroup E-M96.

Haplogroup E-P2, also known as E1b1, is a human Y-chromosome DNA haplogroup. E-P2 has two basal branches, E-V38 and E-M215. E-P2 had an ancient presence in East Africa and the Levant; presently, it is primarily distributed in Africa where it may have originated, and occurs at lower frequencies in the Middle East and Europe.

In human population genetics, Y-Chromosome haplogroups define the major lineages of direct paternal (male) lines back to a shared common ancestor in Africa. Men in the same haplogroup share a set of differences, or markers, on their Y-Chromosome, which distinguish them from men in other haplogroups. These UEPs, or markers used to define haplogroups, are SNP mutations. Y-Chromosome Haplogroups all form "family trees" or "phylogenies", with both branches or sub-clades diverging from a common haplogroup ancestor, and also with all haplogroups themselves linked into one family tree which traces back ultimately to the most recent shared male line ancestor of all men alive today, called in popular science Y Chromosome Adam.

Haplogroup C1 also known as C-F3393, is a major Y-chromosome haplogroup. It is one of two primary branches of the broader Haplogroup C, the other being C2.

Haplogroup C-B477, also known as Haplogroup C1b2, is a Y-chromosome haplogroup. It is one of two primary branches of Haplogroup C1b, one of the descendants of Haplogroup C1.

References

  1. 1 2 3 4 崎谷満『DNA・考古・言語の学際研究が示す新・日本列島史』(勉誠出版 2009年)(in Japanese)
  2. 1 2 3 4 5 6 7 8 Zhong H, Shi H, Qi XB, et al. (July 2010). "Global distribution of Y-chromosome haplogroup C-M130 reveals the prehistoric migration routes of African exodus and early settlement in East Asia". J. Hum. Genet. 55 (7): 428–35. doi: 10.1038/jhg.2010.40 . PMID   20448651.
  3. "At present, most of the archaeological and genetic evidence supports that the earliest African exodus went out of Africa via the Red Sea and then rapidly migrated to mainland Southeast Asia through the Indian coastline, and eventually reached Oceania.36, 37, 38, 39 Recent Y-chromosome and mitochondrial DNA analysis in Australia and New Guinea has shown that Hg C is likely one of the earliest Out-of-Africa founder types,12 which was also proposed in another study,6 and that mitochondrial DNA lineages consisting of the founder types (M and N) are dated to approximately 50–70 KYA.12" ... "We propose that Hg C was derived from the African exodus and gradually colonized South Asia, Southeast Asia, Oceania and East Asia by a single Paleolithic migration from Africa to Asia and Oceania, which occurred more than 40 KYA."
  4. "ISOGG 2018 Y-DNA Haplogroup C".
  5. 1 2 3 Tumonggor, Meryanne K; Karafet, Tatiana M; Downey, Sean; et al. (2014). "Isolation, contact and social behavior shaped genetic diversity in West Timor". Journal of Human Genetics. 59 (9): 1–10. doi:10.1038/jhg.2014.62. PMC   4521296 . PMID   25078354.
  6. 1 2 Scheinfeldt, L.; Friedlaender, F; Friedlaender, J; Latham, K; Koki, G; Karafet, T; Hammer, M; Lorenz, J (2006). "Unexpected NRY Chromosome Variation in Northern Island Melanesia". Molecular Biology and Evolution. 23 (8): 1628–41. doi: 10.1093/molbev/msl028 . PMID   16754639.
  7. 1 2 3 4 5 6 7 8 ISOGG, 2015 "Y-DNA Haplogroup C and its Subclades – 2015" (15 September 2015).
  8. Karafet TM, Mendez FL, Meilerman MB, Underhill PA, Zegura SL, Hammer MF (2008). "New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree". Genome Research. 18 (5): 830–8. doi:10.1101/gr.7172008. PMC   2336805 . PMID   18385274.
  9. Wang, CC; Li, H (2013). "Inferring human history in East Asia from Y chromosomes". Investig Genet. 4 (1): 11. doi: 10.1186/2041-2223-4-11 . PMC   3687582 . PMID   23731529.
  10. 1 2 Nagle, N.; et al. (2015). "Antiquity and diversity of aboriginal Australian Y-chromosomes". American Journal of Physical Anthropology. 159 (3): 367–81. doi:10.1002/ajpa.22886. PMID   26515539. S2CID   2225529.
  11. Hudjashov G, Kivisild T, Underhill PA, et al. (May 2007). "Revealing the prehistoric settlement of Australia by Y chromosome and mtDNA analysis". Proc. Natl. Acad. Sci. U.S.A. 104 (21): 8726–30. Bibcode:2007PNAS..104.8726H. doi: 10.1073/pnas.0702928104 . PMC   1885570 . PMID   17496137.
  12. Cognoms Catalans, n.d., Resultat (15 September 2015). (The Cognoms Catalans project, which researches "genetic surnames" in Catalonia, Valencia and the Balearic Islands, is based at Universitat Pompeu Fabra, Barcelona.)
  13. Fu, Q.; Posth, C.; Hajdinjak, M.; Petr, M.; Mallick, S.; Fernandes, D.; Furtwängler, A.; Haak, W.; Meyer, M.; Mittnik, A.; Nickel, B.; Peltzer, A.; Rohland, N.; Slon, V.; Talamo, S.; Lazaridis, I.; Lipson, M.; Mathieson, I.; Schiffels, S.; Skoglund, P.; Derevianko, A. P.; Drozdov, N.; Slavinsky, V.; Tsybankov, A.; Cremonesi, R. G.; Mallegni, F.; Gély, B.; Vacca, E.; González Morales, M. R.; et al. (2016). "The genetic history of Ice Age Europe". Nature. 534 (7606): 200–205. Bibcode:2016Natur.534..200F. doi:10.1038/nature17993. PMC   4943878 . PMID   27135931.
  14. Seguin-Orlando, A.; et al. (2014). "Genomic structure in Europeans dating back at least 36,200 years" (PDF). Science. 346 (6213): 1113–1118. Bibcode:2014Sci...346.1113S. doi:10.1126/science.aaa0114. PMID   25378462. S2CID   206632421. Archived from the original (PDF) on 2016-08-29.
  15. 1 2 Xue Y, Zerjal T, Bao W, et al. (April 2006). "Male demography in East Asia: a north-south contrast in human population expansion times". Genetics. 172 (4): 2431–9. doi:10.1534/genetics.105.054270. PMC   1456369 . PMID   16489223.
  16. 1 2 3 Hammer MF, Karafet TM, Park H, et al. (2006). "Dual origins of the Japanese: common ground for hunter-gatherer and farmer Y chromosomes". J. Hum. Genet. 51 (1): 47–58. doi: 10.1007/s10038-005-0322-0 . PMID   16328082.
  17. Tajima, Atsushi; Hayami, Masanori; Tokunaga, Katsushi; Juji, T; Matsuo, M; Marzuki, S; Omoto, K; Horai, S (2004). "Genetic origins of the Ainu inferred from combined DNA analyses of maternal and paternal lineages". Journal of Human Genetics. 49 (4): 187–193. doi: 10.1007/s10038-004-0131-x . PMID   14997363.
  18. 1 2 3 4 Sengupta S, Zhivotovsky LA, King R, et al. (February 2006). "Polarity and temporality of high-resolution y-chromosome distributions in India identify both indigenous and exogenous expansions and reveal minor genetic influence of Central Asian pastoralists". Am. J. Hum. Genet. 78 (2): 202–21. doi:10.1086/499411. PMC   1380230 . PMID   16400607.
  19. 1 2 Lell JT, Sukernik RI, Starikovskaya YB, et al. (January 2002). "The dual origin and Siberian affinities of Native American Y chromosomes". Am. J. Hum. Genet. 70 (1): 192–206. doi:10.1086/338457. PMC   384887 . PMID   11731934.
  20. Wells RS, Yuldasheva N, Ruzibakiev R, et al. (August 2001). "The Eurasian heartland: A continental perspective on Y-chromosome diversity". Proc. Natl. Acad. Sci. U.S.A. 98 (18): 10244–9. Bibcode:2001PNAS...9810244W. doi: 10.1073/pnas.171305098 . PMC   56946 . PMID   11526236.
  21. Nasidze I, Quinque D, Dupanloup I, Cordaux R, Kokshunova L, Stoneking M (December 2005). "Genetic evidence for the Mongolian ancestry of Kalmyks". Am. J. Phys. Anthropol. 128 (4): 846–54. doi:10.1002/ajpa.20159. PMID   16028228. S2CID   27115596.
  22. Scozzari R, Massaia A, D'Atanasio E, Myres NM, Perego UA, et al. (2012). "Molecular Dissection of the Basal Clades in the Human Y Chromosome Phylogenetic Tree". PLOS ONE. 7 (11): e49170. Bibcode:2012PLoSO...749170S. doi: 10.1371/journal.pone.0049170 . PMC   3492319 . PMID   23145109.
  23. "Dienekes' Anthropology Blog: Brown-skinned, blue-eyed, Y-haplogroup C-bearing European hunter-gatherer from Spain (Olalde et al. 2014)". 2014-01-26.
  24. http://biorxiv.org/content/biorxiv/early/2015/02/10/013433.full.pdf [ bare URL PDF ]
  25. Fu, Qiaomei; et al. (2016). "The genetic history of Ice Age Europe". Nature. 534 (7606): 200–5. Bibcode:2016Natur.534..200F. doi:10.1038/nature17993. PMC   4943878 . PMID   27135931.
  26. 1 2 3 Gayden, Tenzin; Cadenas, Alicia M.; Regueiro, Maria; Singh, NB; Zhivotovsky, LA; Underhill, PA; Cavalli-Sforza, LL; Herrera, RJ (2007). "The Himalayas as a Directional Barrier to Gene Flow". American Journal of Human Genetics. 80 (5): 884–894. doi:10.1086/516757. PMC   1852741 . PMID   17436243.
  27. 1 2 Fornarino, Simona; Pala, Maria; Battaglia, Vincenza; et al. (2009). "Mitochondrial and Y-chromosome diversity of the Tharus (Nepal): a reservoir of genetic variation". BMC Evolutionary Biology. 9 (1): 154. Bibcode:2009BMCEE...9..154F. doi: 10.1186/1471-2148-9-154 . PMC   2720951 . PMID   19573232.
  28. 1 2 Cadenas, Alicia M; Zhivotovsky, Lev A; Cavalli-Sforza, Luca L; Underhill, PA; Herrera, RJ (2008). "Y-chromosome diversity characterizes the Gulf of Oman". European Journal of Human Genetics. 16 (3): 374–386. doi: 10.1038/sj.ejhg.5201934 . PMID   17928816.
  29. 1 2 Abu-Amero, Khaled K; Hellani, Ali; González, Ana M; Larruga, Jose M; Cabrera, Vicente M; Underhill, Peter A (2009). "Saudi Arabian Y-Chromosome diversity and its relationship with nearby regions". BMC Genetics. 10: 59. doi: 10.1186/1471-2156-10-59 . PMC   2759955 . PMID   19772609.
  30. Karafet, T. M.; Mendez, F. L.; Meilerman, M. B.; Underhill, P. A.; Zegura, S. L.; Hammer, M. F. (2008). "New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree". Genome Research. 18 (5): 830–8. doi:10.1101/gr.7172008. PMC   2336805 . PMID   18385274.
  31. Cox MP, Redd AJ, Karafet TM, et al. (October 2007). "A Polynesian motif on the Y chromosome: population structure in remote Oceania". Hum. Biol. 79 (5): 525–35. doi:10.1353/hub.2008.0004. hdl: 1808/13585 . PMID   18478968. S2CID   4834817.
  32. Underhill PA, Shen P, Lin AA, et al. (November 2000). "Y chromosome sequence variation and the history of human populations". Nat. Genet. 26 (3): 358–61. doi:10.1038/81685. PMID   11062480. S2CID   12893406.
  33. Zegura SL, Karafet TM, Zhivotovsky LA, Hammer MF (January 2004). "High-resolution SNPs and microsatellite haplotypes point to a single, recent entry of Native American Y chromosomes into the Americas". Mol. Biol. Evol. 21 (1): 164–75. doi: 10.1093/molbev/msh009 . PMID   14595095.
  34. Pakendorf B, Novgorodov IN, Osakovskij VL, Danilova AP, Protod'jakonov AP, Stoneking M (October 2006). "Investigating the effects of prehistoric migrations in Siberia: genetic variation and the origins of Yakuts". Hum. Genet. 120 (3): 334–53. doi:10.1007/s00439-006-0213-2. PMID   16845541. S2CID   31651899.
  35. Khar'kov VN, Stepanov VA, Medvedev OF, et al. (2008). "[The origin of Yakuts: analysis of Y-chromosome haplotypes]". Mol. Biol. (Mosk.) (in Russian). 42 (2): 226–37. PMID   18610830.
  36. 1 2 3 Boris Malyarchuk, Miroslava Derenko, Galina Denisova, et al., "Phylogeography of the Y-chromosome haplogroup C in northern Eurasia." Annals of Human Genetics (2010) 74,539–546. doi: 10.1111/j.1469-1809.2010.00601.x.
  37. Manfred Kayser, Silke Brauer, Richard Cordaux, et al. (2006), "Melanesian and Asian Origins of Polynesians: mtDNA and Y Chromosome Gradients Across the Pacific." Mol. Biol. Evol. 23(11):2234–2244. doi:10.1093/molbev/msl093
  38. Mona, Stefano; Grunz, Katharina E.; Brauer, Silke; et al. (2009). "Genetic Admixture History of Eastern Indonesia as Revealed by Y-Chromosome and Mitochondrial DNA Analysis". Mol. Biol. Evol. 26 (8): 1865–1877. doi: 10.1093/molbev/msp097 . PMID   19414523.
  39. Karafet Tatiana M.; Hallmark Brian; Cox Murray P.; et al. (2010). "Major East–West Division Underlies Y Chromosome Stratification across Indonesia". Mol. Biol. Evol. 27 (8): 1833–1844. doi: 10.1093/molbev/msq063 . PMID   20207712. S2CID   4819475.
  40. J D Cristofaro et al., 2013, "Afghan Hindu Kush: Where Eurasian Sub-Continent Gene Flows Converge", http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0076748
  41. 1 2 Wang C-C, Wang L-X, Shrestha R, Zhang M, Huang X-Y, et al. (2014), "Genetic Structure of Qiangic Populations Residing in the Western Sichuan Corridor." PLoS ONE 9(8): e103772. doi:10.1371/journal.pone.0103772
  42. Wei, Lan-Hai; Yan, Shi; Yu, Ge; Huang, Yun-Zhi; Yao, Da-Li; Li, Shi-Lin; Jin, Li; Li, Hui (2017). "Genetic trail for the early migrations of Aisin Gioro, the imperial house of the Qing dynasty". J Hum Genet. 62 (Mar 62(3)): 407–411. doi:10.1038/jhg.2016.142. PMID   27853133. S2CID   7685248.

Sources for conversion tables