Haplogroup A-L1085

Last updated
Haplogroup A-L1085
Possible time of origin140,000 YBP, [1] 125,000 - 382,000 YBP [2]
Possible place of origin Central-Northwest Africa [1]
Ancestor Homo Y-MRCA
Descendants A-V148 (A0), A-P305 (A1)
Highest frequencies Namibia (Tsumkwe San, Nama) 60-70%
Southern Sudan (Dinka, Shilluk, Nuer) 33%-61.5%
Ethiopia (Beta Israel ) 41%-46%

Haplogroup A-L1085, also known as haplogroup A0-T is a human Y-DNA haplogroup. It is part of the paternal lineage of almost all humans alive today. The SNP L1085 has played two roles in population genetics: firstly, most Y-DNA haplogroups have diverged from it and; secondly, it defines the undiverged basal clade A-L1085*.

Contents

A0-T has two primary branches: A-V148 (also known as haplogroup A0) and haplogroup A-P305 (haplogroup A1).

Origin

Haplogroup A is common among Nilotic peoples. The Khoisan people are known to carry a subclade of haplogroup A at very high frequency. Peace agreement dancers in Kapoeta, Sudan.jpg
Haplogroup A is common among Nilotic peoples. The Khoisan people are known to carry a subclade of haplogroup A at very high frequency.

Many proposals for haplogroup A-L1085's origin suggest it was associated with the ancestral population of Southern Africa's hunter-gatherers. This is because haplogroup A-L1085 lineages are frequent among the San people.

However, the A-L1085 lineages of Southern Africa are subclades of A lineages found in other parts of Africa, mostly among Nilotic peoples but also among other Africans. This suggests that A-L1085 lineages arrived in Southern Africa from elsewhere. [3] The two most basal lineages of Haplogroup A-L1085, A-V148 and A-P305, have been detected in West Africa, Northwest Africa and Central Africa. Cruciani et al. 2011 suggests that these lineages may have emerged somewhere in between Central and Northwest Africa, though such an interpretation is still preliminary due to the incomplete geographic coverage of African y-chromosomes. [1]

Initial studies reported that Haplogroup A-L1085 lineages emerged around 60,000 years ago which was significantly more recent than TMRCA for mitochondrial DNA lineages which coalesce to between 150-200kya. Cruciani et al. 2011 with major restructuring of branches pushed back the root of the Y-chromosome tree to 142,000 years ago. [1]

In November 2012, a new study by Scozzari et al. reinforced "the hypothesis of an origin in the north-western quadrant of the African continent for the A1b haplogroup, and, together with recent findings of ancient Y-Chromosome lineages in central-western Africa, provide new evidence regarding the geographical origin of human MSY diversity". [4]

Geographical distribution

Central Africa

Haplogroup A-M13 has been observed in populations of northern Cameroon (2/9 = 22% Tupuri, [5] 4/28 = 14% Mandara, [5] 2/17 = 12% Fulbe [6] ) and eastern DRC (2/9 = 22% Alur, [5] 1/18 = 6% Hema, [5] 1/47 = 2% Mbuti [5] ).

Haplogroup A-M91(xA-M31,A-M6,A-M32) has been observed in the Bakola people of southern Cameroon (3/33 = 9%). [5]

Without testing for any subclade, haplogroup A-L1085 has been observed in samples of several populations of Gabon, including 9% (3/33) of a sample of Baka, 3% (1/36) of a sample of Ndumu, 2% (1/46) of a sample of Duma, 2% (1/57) of a sample of Nzebi, and 2% (1/60) of a sample of Tsogo. [7]

East Africa

Haplogroup A-M13 is common among the Southern Sudanese (53%), [8] especially the Dinka (61.5%). [9] Haplogroup A-M13 also has been observed in another sample of a South Sudanese population at a frequency of 45% (18/40), including 1/40 A-M171. [10] Haplogroup A also has been reported in 14.6% (7/48) of an Amhara sample, [11] 10.3% (8/78) of an Oromo sample, [11] 13.6% (12/88) of another sample from Ethiopia, [10] and 41% of a sample of the Beta Israel (Cruciani et al. 2002), and important percentages are also shared by Bantus in Kenya (14%, Luis et al. 2004) and Iraqw in Tanzania (3/43 = 7.0% (Luis et al. 2004) to 1/6 = 17% (Knight et al. 2003)).

North Africa

The subclade A1 has been observed in Libyan Berbers, while the subclade A-M13 has been observed in approximately 3% of Egyptian males.

Southern Africa

One study has found haplogroup A in samples of various Khoisan-speaking groups with frequency ranging from 10% to 70%. [5] This particular haplogroup was not found in a sample of the Hadzabe from Tanzania, a population occasionally grouped with other Khoisan groups due to the presence of click consonants in their language, but whose language was thoroughly demonstrated to be an isolate as unrelated to them as other languages by work by linguist Bonny Sands.

Europe

Haplogroup A has been observed as A1 in European men in England. A Y chromosome has been observed also with low frequency in Asia Minor, in the Middle East and in some Mediterranean islands, among Aegean Greeks, Sicilians (0.2% of A1a in Capo d’Orlando and 0.5% of A1b in all the island), Palestinians, Jordanians and Yemenites. Without testing for any subclade, haplogroup A1b has been observed in a sample of Greeks from Mitilini on the Aegean island of Lesvos [12] and A1b has been observed also on 0.1% of Iberian Jewish. The authors of one study have reported finding what appears to be haplogroup A in 3.1% (2/65) of a sample of Cypriots, [13] though they have not definitively excluded the possibility that either of these individuals may belong to haplogroup B.

Subclade distribution

Diversion of haplogroup A (Y-DNA) and its descendants. Haplogrupos ADN-Y Africa.PNG
Diversion of haplogroup A (Y-DNA) and its descendants.

A-V148* (A0)*)

A-V148 is one of two primary branches in A0-T. [1]

A-P305* (A1*)

Haplogroup A-P305* is largely restricted to parts of Africa, though a handful of cases have been reported in Europe and Western Asia.

A-P305 is found at its highest rates in Bakola Pygmies (South Cameroon) at 8.3% and Berbers from Algeria at 1.5% [1] and in Ghana. [4] The clade also achieves high frequencies in the Bushmen hunter-gatherer populations of Southern Africa, followed closely by many Nilotic groups in Eastern Africa. However, haplogroup A's oldest sub-clades are exclusively found in Central-Northwest Africa, where it, and consequently Y-chromosomal Adam, is believed to have originated about 140,000 years ago. [1] The clade has also been observed at notable frequencies in certain populations in Ethiopia, as well as some Pygmy groups in Central Africa.

Haplogroup A-L1085 is less common among Niger–Congo speakers, who largely belong to the E1b1a clade. Haplogroup E in general is believed to have originated in Northeast Africa, [14] and was later introduced to West Africa from where it spread around 5,000 years ago to Central, Southern and Southeastern Africa with the Bantu expansion. [15] [7] According to Wood et al. (2005) and Rosa et al. (2007), such relatively recent population movements from West Africa changed the pre-existing population Y chromosomal diversity in Central, Southern and Southeastern Africa, replacing the previous haplogroups in these areas with the now dominant E1b1a lineages. Traces of ancestral inhabitants, however, can be observed today in these regions via the presence of the Y DNA haplogroups A-M91 and B-M60 that are common in certain relict populations, such as the Mbuti Pygmies and the Khoisan. [16] [5] [17]

Haplogroup A frequencies
Africa
Study population Freq.
(in %)
[5] Tsumkwe San (Namibia)66%
[5] Nama (Namibia)64
[8] Dinka (Sudan)62
[8] Shilluk (Sudan)53
[8] Nuba (Sudan)46
[10] Khoisan 44
[6] [18] Ethiopian Jews 41
[5] [6] !Kung/Sekele~40
[8] Borgu (Sudan)35
[8] Nuer (Sudan)33
[8] Fur (Sudan)31
[5] Maasai (Kenya)27
[19] Nara (Eritrea)20
[8] Masalit (Sudan)19
[5] [11] Amhara (Ethiopia)~16
[10] Ethiopians 14
[20] Bantu (Kenya)14
[5] Mandara (Cameroon)14
[8] Hausa (Sudan)13
[6] Khwe (South Africa)12
[6] Fulbe (Cameroon)12
[5] Dama (Namibia)11
[11] Oromo (Ethiopia)10
[19] Kunama (Eritrea)10
[5] South Semitic (Ethiopia)10
[20] Arabs (Egypt)3

In a composite sample of 3551 African men, Haplogroup A had a frequency of 5.4%. [21] The highest frequencies of haplogroup A have been reported among the Khoisan of Southern Africa, Beta Israel, and Nilo-Saharans.

A-M31

The subclade A-M31 has been found in approximately 2.8% (8/282) of a pool of seven samples of various ethnic groups in Guinea-Bissau, especially among the Papel-Manjaco-Mancanha (5/64 = 7.8%). [16] An earlier study, Gonçalves et al. 2003, reported finding A-M31 in 5.1% (14/276) of a sample from Guinea-Bissau and in 0.5% (1/201) of a pair of samples from Cabo Verde. [22] The authors of another study have reported finding haplogroup A-M31 in 5% (2/39) of a sample of Mandinka from Senegambia and 2% (1/55) of a sample of Dogon from Mali. [5] Haplogroup A-M31 also has been found in 3% (2/64) of a sample of Berbers from Morocco [6] and 2.3% (1/44) of a sample of unspecified ethnic affiliation from Mali. [10]

At least seven men with ancestral origins in Yorkshire, England, and sharing the distinctive surname Revis, have been identified as belonging to subclade A-M31. News reports suggested that the men were phenotypically "European" and unaware of any African ancestry. Subsequent research suggested that they shared a common patrilineal ancestor in the 18th century. [21]

A-M6

A-M6 (formerly A2) is typically found among Khoisan peoples. The authors of one study have reported finding haplogroup A-M6(xA-P28) in 28% (8/29) of a sample of Tsumkwe San and 16% (5/32) of a sample of !Kung/Sekele, and haplogroup A-P28 in 17% (5/29) of a sample of Tsumkwe San, 9% (3/32) of a sample of !Kung/Sekele, 9% (1/11) of a sample of Nama, and 6% (1/18) of a sample of Dama. [5] The authors of another study have reported finding haplogroup A-M6 in 15.4% (6/39) of a sample of Khoisan males, including 5/39 A-M6(xA-M114) and 1/39 A-M114. [10]

A-M32

The clade A-M32 (formerly A3) contains the most populous branches of haplogroup A-L1085 and is mainly found in Eastern Africa and Southern Africa.

A-M28

The subclade A-M28 (formerly A3a) has only been rarely observed in the Horn of Africa. In 5% (1/20) of a mixed sample of speakers of South Semitic languages from Ethiopia, [5] 1.1% (1/88) of a sample of Ethiopians, [10] and 0.5% (1/201) in Somalis. [23]

A-M51

The subclade A-M51 (formerly A3b1) occurs most frequently among Khoisan peoples (6/11 = 55% Nama, [5] 11/39 = 28% Khoisan, [10] 7/32 = 22% !Kung/Sekele, [5] 6/29 = 21% Tsumkwe San, [5] 1/18 = 6% Dama [5] ). However, it also has been found with lower frequency among Bantu peoples of Southern Africa, including 2/28 = 7% Sotho–Tswana, [5] 3/53 = 6% non-Khoisan Southern Africans, [10] 4/80 = 5% Xhosa, [5] and 1/29 = 3% Zulu. [5]

A-M13

The subclade A-M13 (formerly A3b2) that is commonly found in East Africa and northern Cameroon is different from those found in the Khoisan samples and only remotely related to them. This finding suggests an ancient divergence.

In Sudan, haplogroup A-M13 has been found in 28/53 = 52.8% of Southern Sudanese, 13/28 = 46.4% of the Nuba of central Sudan, 25/90 = 27.8% of Western Sudanese, 4/32 = 12.5% of local Hausa people, and 5/216 = 2.3% of Northern Sudanese. [24]

In Ethiopia, one study has reported finding haplogroup A-M13 in 14.6% (7/48) of a sample of Amhara and 10.3% (8/78) of a sample of Oromo. [11] Another study has reported finding haplogroup A-M118 in 6.8% (6/88) and haplogroup A-M13(xA-M171, A-M118) in 5.7% (5/88) of a mixed sample of Ethiopians, amounting to a total of 12.5% (11/88) A-M13. [10]

Haplogroup A-M13 also has been observed occasionally outside of Central and Eastern Africa, as in the Aegean Region of Turkey (2/30 = 6.7% [25] ), Yemenite Jews (1/20 = 5% [18] ), Egypt (4/147 = 2.7%, [20] 3/92 = 3.3% [5] ), Palestinian Arabs (2/143 = 1.4% [26] ), Sardinia (1/77 = 1.3%, [27] 1/22 = 4.5% [10] ), the capital of Jordan, Amman (1/101=1% [28] ), and Oman (1/121 = 0.8% [20] ).

Phylogenetics

Phylogenetic history

Prior to 2002, there were in academic literature at least seven naming systems for the Y-Chromosome Phylogenetic tree. This led to considerable confusion. In 2002, the major research groups came together and formed the Y-Chromosome Consortium (YCC). They published a joint paper that created a single new tree that all agreed to use. Later, a group of citizen scientists with an interest in population genetics and genetic genealogy formed a working group to create an amateur tree aiming at being above all timely. The table below brings together all of these works at the point of the landmark 2002 YCC Tree. This allows a researcher reviewing older published literature to quickly move between nomenclatures.

YCC 2002/2008 (Shorthand)(α)(β)(γ)(δ)(ε)(ζ)(η)YCC 2002 (Longhand)YCC 2005 (Longhand)YCC 2008 (Longhand)YCC 2010r (Longhand)ISOGG 2006ISOGG 2007ISOGG 2008ISOGG 2009ISOGG 2010ISOGG 2011ISOGG 2012
A-M31 7I1A1H1AA1A1A1A1aA1A1A1aA1aA1aA1aA1a
A-M6 27I23H1AA2*A2A2A2A2A2A2A2A2A2A1b1a1a
A-M114 27I23H1AA2aA2aA2aA2aA2aA2aA2aA2aA2aA2aA1b1a1a1a
A-P28 27I24H1AA2bA2bA2bA2bA2bA2bA2bA2bA2bA2bA1b1a1a1b
A-M32 ********A3A3A3A3A3A3A3A3A3A1b1b
A-M28 7I1A1H1AA3aA3aA3aA3aA3aA3aA3aA3aA3aA3aA1b1b1
A-M51 7I1A1H1AA3b1A3b1A3b1A3b1A3b1A3b1A3b1A3b1A3b1A3b1A1b1b2a
A-M13 7I1A2Eu1H1AA3b2*A3b2A3b2A3b2A3b2A3b2A3b2A3b2A3b2A3b2A1b1b2b
A-M171 7I1A2Eu1H1AA3b2aA3b2aA3b2aA3b2aA3b2aA3b2aA3b2aA3b2aA3b2aA3b2aremoved
A-M118 7I1A2Eu1H1AA3b2bA3b2bA3b2bA3b2bA3b2bA3b2bA3b2bA3b2bA3b2bA3b2bA1b1b2b1

Original research publications

The following research teams per their publications were represented in the creation of the YCC Tree.

Cruciani 2011

The revised y-chromosome family tree by Cruciani et al. 2011 compared with the family tree from Karafet et al. 2008. A1b is now known as A0 according to ISOGG. Haplogroup A tree.png
The revised y-chromosome family tree by Cruciani et al. 2011 compared with the family tree from Karafet et al. 2008. A1b is now known as A0 according to ISOGG.

A major shift in understanding of the Haplogroup A tree came with the publication of ( Cruciani 2011 ). Initial sequencing of the human y-chromosome suggested that first split in the Y-Chromosome family tree occurred with the M91 mutation that separated Haplogroup A from Haplogroup BT. [29] However, it is now known that deepest split in the Y-chromosome tree is found between two previously reported subclades of Haplogroup A, rather than between Haplogroup A and Haplogroup BT. Subclades A1b and A1a-T now descend directly from the root of the tree. The rearrangement of the Y-chromosome family tree implies that lineages classified as Haplogroup A do not necessarily form a monophyletic clade. [1] Haplogroup A therefore refers to a collection of lineages that do not possess the markers that define Haplogroup BT, though many lineages within haplogroup A are only very distantly related.

The M91 and P97 mutations distinguish Haplogroup A from Haplogroup BT. Within Haplogroup A chromosomes, the M91 marker consists of a stretch of 8 T nucleobase units. In Haplogroup BT and chimpanzee chromosomes, this marker consists of 9 T nucleobase units. This pattern suggested that the 9T stretch of Haplogroup BT was the ancestral version and that Haplogroup A was formed by the deletion of one nucleobase. [1] [29]

But according to Cruciani et al. 2011, the region surrounding the M91 marker is a mutational hotspot prone to recurrent mutations. It is therefore possible that the 8T stretch of Haplogroup A may be the ancestral state of M91 and the 9T of Haplogroup BT may be the derived state that arose by an insertion of 1T. This would explain why subclades A1b and A1a-T, the deepest branches of Haplogroup A, both possess the 8T stretch. Furthermore, Cruciani et al. 2011 determined that the P97 marker, which is also used to identify haplogroup A, possessed the ancestral state in haplogroup A but the derived state in Haplogroup BT. [1]

Phylogenetic trees

This phylogenetic tree of haplogroup subclades is based on the Y-Chromosome Consortium (YCC) Tree, [30] the ISOGG Y-DNA Haplogroup Tree, [15] and subsequent published research.

Y-chromosomal Adam

See also

Genetics

Y-DNA A subclades

Y-DNA backbone tree

Related Research Articles

In human genetics, the Y-chromosomal most recent common ancestor is the patrilineal most recent common ancestor (MRCA) from whom all currently living humans are descended. He is the most recent male from whom all living humans are descended through an unbroken line of their male ancestors. The term Y-MRCA reflects the fact that the Y chromosomes of all currently living human males are directly derived from the Y chromosome of this remote ancestor. The analogous concept of the matrilineal most recent common ancestor is known as "Mitochondrial Eve", the most recent woman from whom all living humans are descended matrilineally. As with "Mitochondrial Eve", the title of "Y-chromosomal Adam" is not permanently fixed to a single individual, but can advance over the course of human history as paternal lineages become extinct.

E-M215, also known as E1b1b-M215, is a human Y-chromosome DNA haplogroup. E-M215 has two basal branches, E-M35 and E-M281. E-M35 is primarily distributed in North Africa and the Horn of Africa, and occurs at lower frequencies in the Middle East, Europe, and Southern Africa. E-M281 occurs at a low frequency in Ethiopia.

Haplogroup A is a human Y-chromosome DNA haplogroup, which includes all living human Y chromosomes. Bearers of extant sub-clades of haplogroup A are almost exclusively found in Africa, in contrast with haplogroup BT, bearers of which participated in the Out of Africa migration of anatomically modern humans. The known branches of haplogroup A are A00, A0, A1a, and A1b1; these branches are only very distantly related, and are not more closely related to each other than they are to haplogroup BT.

<span class="mw-page-title-main">Haplogroup B-M60</span> Human Y chromosome DNA grouping indicating common ancestry

Haplogroup B (M60) is a human Y-chromosome DNA haplogroup common to paternal lineages in Africa. It is a primary branch of the haplogroup BT.

Haplogroup E-M96 is a human Y-chromosome DNA haplogroup. It is one of the two main branches of the older and ancestral haplogroup DE, the other main branch being haplogroup D. The E-M96 clade is divided into two main subclades: the more common E-P147, and the less common E-M75.

Haplogroup E-V38, also known as E1b1a-V38, is a human Y-chromosome DNA haplogroup. E-V38 is primarily distributed in sub-Saharan Africa. E-V38 has two basal branches, E-M329 and E-M2. E-M329 is a subclade mostly found in East Africa. E-M2 is the predominant subclade in West Africa, Central Africa, Southern Africa, and the region of African Great Lakes; it also occurs at moderate frequencies in some parts of North Africa, West Asia, and Southern Europe.

Haplogroup K or K-M9 is a genetic lineage within human Y-chromosome DNA haplogroup. A sublineage of haplogroup IJK, K-M9, and its descendant clades represent a geographically widespread and diverse haplogroup. The lineages have long been found among males on every continent except Antarctica.

<span class="mw-page-title-main">Human Y-chromosome DNA haplogroup</span> Human DNA groupings

In human genetics, a human Y-chromosome DNA haplogroup is a haplogroup defined by mutations in the non-recombining portions of DNA from the male-specific Y chromosome. Many people within a haplogroup share similar numbers of short tandem repeats (STRs) and types of mutations called single-nucleotide polymorphisms (SNPs).

<span class="mw-page-title-main">Haplogroup J-M267</span> Human Y-chromosome DNA haplogroup

Haplogroup J-M267, also commonly known as Haplogroup J1, is a subclade (branch) of Y-DNA haplogroup J-P209 along with its sibling clade haplogroup J-M172.

Haplogroup DE is a human Y-chromosome DNA haplogroup. It is defined by the single nucleotide polymorphism (SNP) mutations, or UEPs, M1(YAP), M145(P205), M203, P144, P153, P165, P167, P183. DE is unique because it is distributed in several geographically distinct clusters. An immediate subclade, haplogroup D, is mainly found in East Asia, parts of Central Asia, and the Andaman Islands, but also sporadically in West Africa and West Asia. The other immediate subclade, haplogroup E, is common in Africa, and to a lesser extent the Middle East and southern Europe.

<span class="mw-page-title-main">Haplogroup BT</span> Human Y chromosome DNA grouping indicating common ancestry

Haplogroup BT M91, also known as Haplogroup A1b2, is a Y-chromosome haplogroup. BT is a subclade of haplogroup A1b (P108) and a sibling of the haplogroup A1b1 (L419/PF712).

E-M35, also known as E1b1b1-M35, is a human Y-chromosome DNA haplogroup. E-M35 has two basal branches, E-V68 and E-Z827. E-V68 and E-Z827 are primarily distributed in North Africa and the Horn of Africa, and occur at lower frequencies in the Middle East, Europe, and Southern Africa.

Haplogroup E-M132, formerly known as E-M33 (E1a), is a human Y-chromosome DNA haplogroup. Along with E-P177, it is one of the two main branches of the older E-P147 paternal clade. E-M132 is divided into two primary sub-branches, E-M44 and E-Z958, with many descendant subclades.

Haplogroup E-M75 is a human Y-chromosome DNA haplogroup. Along with haplogroup E-P147, it is one of the two main branches of the older haplogroup E-M96.

Haplogroup E-V68, also known as E1b1b1a, is a major human Y-chromosome DNA haplogroup found in North Africa, the Horn of Africa, Western Asia and Europe. It is a subclade of the larger and older haplogroup, known as E1b1b or E-M215. The E1b1b1a lineage is identified by the presence of a single nucleotide polymorphism (SNP) mutation on the Y chromosome, which is known as V68. It is a subject of discussion and study in genetics as well as genetic genealogy, archaeology, and historical linguistics.

Haplogroup E-P2, also known as E1b1, is a human Y-chromosome DNA haplogroup. E-P2 has two basal branches, E-V38 and E-M215. E-P2 had an ancient presence in East Africa and the Levant; presently, it is primarily distributed in Africa where it may have originated, and occurs at lower frequencies in the Middle East and Europe.

E-Z827, also known as E1b1b1b, is a major human Y-chromosome DNA haplogroup. It is the parent lineage to the E-Z830 and E-V257 subclades, and defines their common phylogeny. The former is predominantly found in the Middle East; the latter is most frequently observed in the Middle East and North Africa. E-Z827 is also found at lower frequencies in Europe, and in isolated parts of Southeast Africa.

<span class="mw-page-title-main">Haplogroup E-M329</span> Human Y-chromosome DNA haplogroup

Haplogroup E-M329, also known as E1b1a2, is a human Y-chromosome DNA haplogroup. E-M329 is mostly found in East Africa and the Arabian Peninsula.

<span class="mw-page-title-main">Haplogroup E-M2</span> Human Y-chromosome DNA haplogroup

Haplogroup E-M2, also known as E1b1a1-M2, is a human Y-chromosome DNA haplogroup. E-M2 is primarily distributed within sub-Saharan Africa. More specifically, E-M2 is the predominant subclade in West Africa, Central Africa, Southern Africa, and the region of the African Great Lakes; it also occurs at low to moderate frequencies in North Africa, and at low frequencies in the Middle East. E-M2 has several subclades, but many of these subhaplogroups are included in either E-L485 or E-U175. E-M2 is especially common among indigenous Africans who speak Niger-Congo languages, and was spread to Southern Africa and East Africa through the Bantu expansion.

<span class="mw-page-title-main">Haplogroup E-V12</span>

The human Y-chromosome haplogroup E-V12 is a subclade of E-M78, which in turn is part of the larger haplogroup E1b1b1. According to Cruciani et al. (2007), the E-V12 sublineage likely originated in Northern Africa. It is found across Northern Africa with a strong presence in Egypt, Sudan, the Central Sahel, the Horn of Africa, and in lower frequency across the Levant, Anatolia, African Great Lakes region, and Europe.

References

  1. 1 2 3 4 5 6 7 8 9 10 Cruciani F, Trombetta B, Massaia A, Destro-Bisol G, Sellitto D, Scozzari R (Jun 2011). "A revised root for the human Y chromosomal phylogenetic tree: the origin of patrilineal diversity in Africa". American Journal of Human Genetics. 88 (6): 814–8. doi:10.1016/j.ajhg.2011.05.002. PMC   3113241 . PMID   21601174.
  2. Mendez FL, Krahn T, Schrack B, Krahn AM, Veeramah KR, Woerner AE, Fomine FL, Bradman N, Thomas MG, Karafet TM, Hammer MF (Mar 2013). "An African American paternal lineage adds an extremely ancient root to the human Y chromosome phylogenetic tree". American Journal of Human Genetics. 92 (3): 454–9. doi:10.1016/j.ajhg.2013.02.002. PMC   3591855 . PMID   23453668.
  3. Batini C, Ferri G, Destro-Bisol G, Brisighelli F, Luiselli D, Sánchez-Diz P, Rocha J, Simonson T, Brehm A, Montano V, Elwali NE, Spedini G, D'Amato ME, Myres N, Ebbesen P, Comas D, Capelli C (Sep 2011). "Signatures of the preagricultural peopling processes in sub-Saharan Africa as revealed by the phylogeography of early Y chromosome lineages" (PDF). Molecular Biology and Evolution. 28 (9): 2603–13. doi: 10.1093/molbev/msr089 . PMID   21478374.
  4. 1 2 Scozzari R, Massaia A, D'Atanasio E, Myres NM, Perego UA, Trombetta B, Cruciani F (2012). "Molecular dissection of the basal clades in the human Y chromosome phylogenetic tree". PLOS ONE. 7 (11): e49170. Bibcode:2012PLoSO...749170S. doi: 10.1371/journal.pone.0049170 . PMC   3492319 . PMID   23145109.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Wood ET, Stover DA, Ehret C, Destro-Bisol G, Spedini G, McLeod H, Louie L, Bamshad M, Strassmann BI, Soodyall H, Hammer MF (Jul 2005). "Contrasting patterns of Y chromosome and mtDNA variation in Africa: evidence for sex-biased demographic processes". European Journal of Human Genetics. 13 (7): 867–76. doi: 10.1038/sj.ejhg.5201408 . PMID   15856073. cf. Appendix A: Y Chromosome Haplotype Frequencies
  6. 1 2 3 4 5 6 Cruciani F, Santolamazza P, Shen P, Macaulay V, Moral P, Olckers A, Modiano D, Holmes S, Destro-Bisol G, Coia V, Wallace DC, Oefner PJ, Torroni A, Cavalli-Sforza LL, Scozzari R, Underhill PA (May 2002). "A back migration from Asia to sub-Saharan Africa is supported by high-resolution analysis of human Y-chromosome haplotypes". American Journal of Human Genetics. 70 (5): 1197–214. doi:10.1086/340257. PMC   447595 . PMID   11910562.
  7. 1 2 Berniell-Lee G, Calafell F, Bosch E, Heyer E, Sica L, Mouguiama-Daouda P, van der Veen L, Hombert JM, Quintana-Murci L, Comas D (Jul 2009). "Genetic and demographic implications of the Bantu expansion: insights from human paternal lineages". Molecular Biology and Evolution. 26 (7): 1581–9. doi: 10.1093/molbev/msp069 . PMID   19369595.
  8. 1 2 3 4 5 6 7 8 9 28/53 (Dinka, Nuer, and Shilluk), Hassan HY, Underhill PA, Cavalli-Sforza LL, Ibrahim ME (Nov 2008). "Y-chromosome variation among Sudanese: restricted gene flow, concordance with language, geography, and history" (PDF). American Journal of Physical Anthropology. 137 (3): 316–23. doi:10.1002/ajpa.20876. PMID   18618658. Archived from the original (PDF) on 2009-03-04.
  9. 16/26, Hassan et al. 2008
  10. 1 2 3 4 5 6 7 8 9 10 11 Underhill PA, Shen P, Lin AA, Jin L, Passarino G, Yang WH, Kauffman E, Bonné-Tamir B, Bertranpetit J, Francalacci P, Ibrahim M, Jenkins T, Kidd JR, Mehdi SQ, Seielstad MT, Wells RS, Piazza A, Davis RW, Feldman MW, Cavalli-Sforza LL, Oefner PJ (Nov 2000). "Y chromosome sequence variation and the history of human populations". Nature Genetics. 26 (3): 358–61. doi:10.1038/81685. PMID   11062480. S2CID   12893406.
  11. 1 2 3 4 5 Semino O, Santachiara-Benerecetti AS, Falaschi F, Cavalli-Sforza LL, Underhill PA (Jan 2002). "Ethiopians and Khoisan share the deepest clades of the human Y-chromosome phylogeny". American Journal of Human Genetics. 70 (1): 265–8. doi:10.1086/338306. PMC   384897 . PMID   11719903.
  12. Di Giacomo F, Luca F, Anagnou N, Ciavarella G, Corbo RM, Cresta M, Cucci F, Di Stasi L, Agostiano V, Giparaki M, Loutradis A, Mammi' C, Michalodimitrakis EN, Papola F, Pedicini G, Plata E, Terrenato L, Tofanelli S, Malaspina P, Novelletto A (Sep 2003). "Clinal patterns of human Y chromosomal diversity in continental Italy and Greece are dominated by drift and founder effects". Molecular Phylogenetics and Evolution. 28 (3): 387–95. doi:10.1016/S1055-7903(03)00016-2. PMID   12927125.
  13. Capelli C, Redhead N, Romano V, Calì F, Lefranc G, Delague V, Megarbane A, Felice AE, Pascali VL, Neophytou PI, Poulli Z, Novelletto A, Malaspina P, Terrenato L, Berebbi A, Fellous M, Thomas MG, Goldstein DB (Mar 2006). "Population structure in the Mediterranean basin: a Y chromosome perspective". Annals of Human Genetics. 70 (Pt 2): 207–25. doi:10.1111/j.1529-8817.2005.00224.x. hdl: 2108/37090 . PMID   16626331. S2CID   25536759.
  14. Abu-Amero KK, Hellani A, González AM, Larruga JM, Cabrera VM, Underhill PA (2009). "Saudi Arabian Y-Chromosome diversity and its relationship with nearby regions". BMC Genetics. 10 (59): 59. doi:10.1186/1471-2156-10-59. PMC   2759955 . PMID   19772609.
  15. 1 2 International Society of Genetic Genealogy. "Y-DNA Haplogroup Tree".
  16. 1 2 Rosa A, Ornelas C, Jobling MA, Brehm A, Villems R (2007). "Y-chromosomal diversity in the population of Guinea-Bissau: a multiethnic perspective". BMC Evolutionary Biology. 7: 124. doi:10.1186/1471-2148-7-124. PMC   1976131 . PMID   17662131.
  17. Underhill PA, Passarino G, Lin AA, Shen P, Mirazón Lahr M, Foley RA, Oefner PJ, Cavalli-Sforza LL (Jan 2001). "The phylogeography of Y chromosome binary haplotypes and the origins of modern human populations". Annals of Human Genetics. 65 (Pt 1): 43–62. doi: 10.1046/j.1469-1809.2001.6510043.x . PMID   11415522. S2CID   9441236.
  18. 1 2 Shen P, Lavi T, Kivisild T, Chou V, Sengun D, Gefel D, Shpirer I, Woolf E, Hillel J, Feldman MW, Oefner PJ (Sep 2004). "Reconstruction of patrilineages and matrilineages of Samaritans and other Israeli populations from Y-chromosome and mitochondrial DNA sequence variation". Human Mutation. 24 (3): 248–60. doi:10.1002/humu.20077. PMID   15300852. S2CID   1571356.
  19. 1 2 Cruciani F, Trombetta B, Sellitto D, Massaia A, Destro-Bisol G, Watson E, Beraud Colomb E, Dugoujon JM, Moral P, Scozzari R (Jul 2010). "Human Y chromosome haplogroup R-V88: a paternal genetic record of early mid Holocene trans-Saharan connections and the spread of Chadic languages". European Journal of Human Genetics. 18 (7): 800–7. doi:10.1038/ejhg.2009.231. PMC   2987365 . PMID   20051990.
  20. 1 2 3 4 Luis JR, Rowold DJ, Regueiro M, Caeiro B, Cinnioğlu C, Roseman C, Underhill PA, Cavalli-Sforza LL, Herrera RJ (Mar 2004). "The Levant versus the Horn of Africa: evidence for bidirectional corridors of human migrations". American Journal of Human Genetics. 74 (3): 532–44. doi:10.1086/382286. PMC   1182266 . PMID   14973781.
  21. 1 2 King TE, Parkin EJ, Swinfield G, Cruciani F, Scozzari R, Rosa A, Lim SK, Xue Y, Tyler-Smith C, Jobling MA (Mar 2007). "Africans in Yorkshire? The deepest-rooting clade of the Y phylogeny within an English genealogy". European Journal of Human Genetics. 15 (3): 288–93. doi:10.1038/sj.ejhg.5201771. PMC   2590664 . PMID   17245408.
    News article: "Yorkshire clan linked to Africa". BBC News. 2007-01-24. Retrieved 2007-01-27.
  22. Gonçalves R, Rosa A, Freitas A, Fernandes A, Kivisild T, Villems R, Brehm A (Nov 2003). "Y-chromosome lineages in Cabo Verde Islands witness the diverse geographic origin of its first male settlers". Human Genetics. 113 (6): 467–72. doi:10.1007/s00439-003-1007-4. hdl: 10400.13/3047 . PMID   12942365. S2CID   63381583.
  23. Abu-Amero KK, Hellani A, González AM, Larruga JM, Cabrera VM, Underhill PA (22 September 2009). "Saudi Arabian Y-Chromosome diversity and its relationship with nearby regions". BMC Genetics. 10: 59. doi:10.1186/1471-2156-10-59. PMC   2759955 . PMID   19772609.
  24. Hisham Y. Hassan et al. (2008). "Southern Sudanese" includes 26 Dinka, 15 Shilluk, and 12 Nuer. "Western Sudanese" includes 26 Borgu, 32 Masalit, and 32 Fur. "Northern Sudanese" includes 39 Nubians, 42 Beja, 33 Copts, 50 Gaalien, 28 Meseria, and 24 Arakien.
  25. Cinnioglu C, King R, Kivisild T, et al. (2004). "Excavating Y-chromosome haplotype strata in Anatolia". Human Genetics. 114 (2): 127–148. doi:10.1007/s00439-003-1031-4. PMID   14586639. S2CID   10763736.
  26. Nebel A, Filon D, Brinkmann B, Majumder PP, Faerman M, Oppenheim A (Nov 2001). "The Y chromosome pool of Jews as part of the genetic landscape of the Middle East". American Journal of Human Genetics. 69 (5): 1095–112. doi:10.1086/324070. PMC   1274378 . PMID   11573163.
  27. Semino O, Passarino G, Oefner PJ, Lin AA, Arbuzova S, Beckman LE, De Benedictis G, Francalacci P, Kouvatsi A, Limborska S, Marcikiae M, Mika A, Mika B, Primorac D, Santachiara-Benerecetti AS, Cavalli-Sforza LL, Underhill PA (Nov 2000). "The genetic legacy of Paleolithic Homo sapiens sapiens in extant Europeans: a Y chromosome perspective". Science. 290 (5494): 1155–9. Bibcode:2000Sci...290.1155S. doi:10.1126/science.290.5494.1155. PMID   11073453.
  28. Flores C, Maca-Meyer N, Larruga JM, Cabrera VM, Karadsheh N, Gonzalez AM (2005). "Isolates in a corridor of migrations: a high-resolution analysis of Y-chromosome variation in Jordan". Journal of Human Genetics. 50 (9): 435–41. doi: 10.1007/s10038-005-0274-4 . PMID   16142507.
  29. 1 2 Karafet TM, Mendez FL, Meilerman MB, Underhill PA, Zegura SL, Hammer MF (May 2008). "New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree". Genome Research. 18 (5): 830–8. doi:10.1101/gr.7172008. PMC   2336805 . PMID   18385274.
  30. Krahn, Thomas. "YCC Tree". Houston, Texas: FTDNA. Archived from the original on 26 July 2011. Retrieved 16 May 2011.

Sources for conversion tables