Genetic studies on Gujarati people

Last updated

The study of the genetics and archaeogenetics of the Gujarati people of India aims at uncovering these people's genetic history. According to the 1000 Genomes Project, "Gujarati" is a general term used to describe people who trace their ancestry to the region of Gujarat, located in the northwestern part of the Indian subcontinent, and who speak the Gujarati language, an Indo-European language. [1] They have some genetic commonalities as well as differences with other ethnic groups of India.

Contents

Autosomal DNA

DNA studies

Our analysis of haplotype similarity at the SLC24A5 region [which affects skin pigmentation] between the Gujarati Indians also indicated greater degree of sharing with the southern Europeans than with the south Tamil Indians.

One of the GIH subgroups fall outside the main gradient of Indian groups, suggesting that they harbor substantial ancestry that is not a simple mixture of ASI and ANI. A speculative hypothesisis that some Gujarati groups descend from the founders of the “Gurjara Pratihara” empire, which is thought to have been founded by Central Asian invaders in the 7th century A.D. and to have ruled parts of northwest India from the 7-12th centuries. I. Karve noted that endogamous groups with names like “Gurjar” are now distributed throughout the northwest of the subcontinent, and hypothesized that that they likely trace their names to this invading group.

Autosomal DNA components

The 1000 Genomes Project collected 117 samples of unrelated Gujarati people living in Houston, Texas (abbreviated GIH). [1] These samples were analyzed in a 2016 study by South African and Indian geneticists (Sengupta et al., 2016), who divided them into two subgroups, and used admixture to estimate the proportion of inferred ancestral component for each subgroup. Based on genetic and geographical affinities, Gujaratis and Gujarati Brahmins were placed in the Northwest Indian subcontinent in supplementary table 1 of this study. [12]

Populations Ancestral North Indian (ANI) Ancestral South Indian (ASI)Ancestral Austroasiatic (AAA)Ancestral Tibeto-Burman (ATB) Andaman archipelago (A&N)
Gujaratis (1)76.2%9.4%13.8%0.3%0.2%
Gujaratis (2)80.7%7.1%8.5%3.1%0.5%

A separate study by geneticists from West Bengal (Basu et al., 2016) estimated the following ancestral proportions for Gujarati Brahmins, and classified them in northwest India: [13]

PopulationANIASIAAAATB
Gujarati Brahmins88.23%7.59%4.12%0.06%

Most South Asians carry both the Ancestral North Indian (ANI) component, which is closely related to those in Central Asia, West Asia and Europe, and the Ancestral South Indian (ASI) component, which is restricted to South Asia. [8] [14]

mtDNA

Haplogroup R

Sub-haplogroup U

Over 33% of all mitochondrial genetic markers of the population of Gujarat originate from West Eurasia. The mitochondrial DNA (mtDNA) sub-haplogroup U7 is common in Gujarat. It is found in over 12% of the population, higher than in Punjab (9%), Pakistan, Iran, Afghanistan, or anywhere else. U7 is only found in frequencies between 0% and 0.9% in other populations of India. The study by Quintana-Murci et al. (2004) of 34 Gujaratis found the presence of U2a and U7 sub-haplogroups (8.8%) followed by U2b (5.9%) and U2c (2.9%). [15] [16] [17]

Other sub-haplogroups of R

The study by Quintana-Murci et al. (2004) of Gujaratis found the presence of R* (8.8%), H (5.9%), J1(2.9%). [16] [17]

Other minor haplogroups of N

The study by Quintana-Murci et al. (2004) found presence of haplogroup W (8.8%) in Gujaratis as well as other northwestern states like Punjab and Kashmir. Haplogroup W is descended from the haplogroup N2. They also found N* (2.9%) in Gujaratis. [16] [18] [17]

The mtDNA haplogroup HV is found in at least one Patel Gujarati family which is also found in some Tamil Brahmins. [18]

Y chromosome

The Y chromosome DNA (Y-DNA) of some Gujarati males has haplogroup R1a, specifically R-L657 (the L657 subclade). Other has R-Y874 (the Y874 subclade of R1a1a1) which also found in Telugu people. Other common finding is haplogroup J2b2 (J-M241). The SNP mutation referred to as Y951 is also found in Gujarati people as well as Punjabis. The haplogroup C-M356 (C1b, previously called C5a, within which C-P92 is a subclade defined by the P92 mutation) is also found among some Gujarati people. [18] [19]

A set of 48 bi-allelic markers on the non-recombining region of Y chromosome (NRY) were analysed in 284 males; representing nine Indo-European speaking tribal populations of South Gujarat. The genetic structure of the populations revealed that none of these groups was overtly admixed or completely isolated. However, elevated haplogroup diversity and FST value point towards greater diversity and differentiation which suggests the possibility of early demographic expansion of the study groups. The phylogenetic analysis revealed 13 paternal lineages, of which six haplogroups: C5, H1a*, H2, J2, R1a1* and R2 accounted for a major portion of the Y chromosome diversity. The higher frequency of the six haplogroups and the pattern of clustering in the populations indicated overlapping of haplogroups with West and Central Asian populations. Other analyses undertaken on the population affiliations revealed that the Indo-European speaking populations along with the Dravidian speaking groups of southern India have an influence on the tribal groups of Gujarat. The vital role of geography in determining the distribution of Y lineages was also noticed. This implies that although language plays a vital role in determining the distribution of Y lineages, the present day linguistic affiliation of any population in India for reconstructing the demographic history of the country should be considered with caution. [20]

R1a origins in Gujarat

Following the 2010 discovery that the oldest strain of the R1a1a branch was concentrated in the Gujarat-Sindh-Western Rajasthan region, it has been suggested[ by whom? ] that this location may have been the origin of this genetic group. The genetic similarities between North Indians and Eastern Europeans are possibly due to having a common ancestor. R1b, the most common haplogroup in Western Europe, has a relatively low concentration in India, and it possibly originated in the Persian Gulf. It is possible that these haplogroups originated from two major genetic dispersals from the Persian Gulf-Makran-Gujarat region. [21]

Genetics and archaeogenetics of Gujarati groups

Genetics

Inverted Y chromosome polymorphism in Gujarati Muslims of South Africa

The pericentric inversion of the Y-chromosome (inv(Y)) is a rare chromosomal heteromorphism which is hereditary. It has no clinical significance or reproductive disadvantage. [22] It is studied in Gujarati Muslims of South Africa, 8 inv(Y) men opposed to 9 normal men. The p49a/TaqI and p49a/PvuII haplotypes were determined and found that 8 inv(Y) possessed identical TaqI and PvuII where as 7 different TaqI and 8 different PvuII haplotypes observed in the 9 normal men. So It is concluded that inv(Y) has common genetic origin in Gujarati Muslims of South Africa. The origin is traced to Kholvad, a small village near Surat, and some neighbouring villages. It is probably originated through random genetic drift in reproductively isolated community, maintained by strict endogamy based on religious and linguistic affiliations. [23] [24]

Vitiligo in Gujaratis

Vitiligo is a long term skin condition characterized by patches of the skin losing their pigment. It affects 1—2% of the population of world while 0.5—2.5% population of India. But Gujarat and Rajasthan has the highest prevalence (~8.8%). [25] Rasheedunnisa Begum et al. conducted genetic studies of over 1500 patients from Gujarat and found an SNP variation in the autosomal DNA of Gujaratis which make them more prone to Vitiligo. [26] [27]

Deletion β° thalassaemia

A study suggested the Indian deletion β° type (600 bp deletion involving the 3’ end) thalassaemia has single origin as all 23 patients of it in study were from either Sindh or Gujarat who had identical haplotypes. [28]

Meckel syndrome

The Leicestershire Perinatal Mortality Survey for the years 1976 to 1982 found high incidences of Meckel syndrome in Gujarati immigrants. [29]

Archeogenetics

Impact of cultural marriage practices on genetic variation

In India, caste is a form of social stratification characterized by endogamy. Within caste, there are endogamous groups known as gol (marriage circle) by Gujarati people. In it, there are small number of exogamous lineages known as gotra. A person can not marry within gotra as well as outside gol. Gujarati Patels practice this "exogamic endogamy" which is also found elsewhere in India. One such gol known as Chha Gaam Patels (CGP) include people from six villages of Charotar region of Gujarat. A study found their genetic similarities as well as confirms their patrilocal and patrilineal practices within the group. It also confirms low-level of female gene inflow within the group. The study illustrates impact of culture marriage practice on genetic variation in Indian population. [30]

Parsis

The Parsis have sharp contrast between genetic data obtained from mitochondrial DNA (mtDNA), a maternal component, and Y-chromosome DNA (Y-DNA), a paternal component. According to Y-DNA, they resemble the Iranian population, which supports their historical origin from Iran. But about 60% of their maternal gene pool originates from South Asian haplogroups, which is just 7% in Iranians. Parsis have high frequency of haplogroup M of mtDNA (55%), similar to Indians, which is just 1.7% in combined Iranian sample. Due to high diversity in Y-DNA and mtDNA lineages, the strong drift effect is unlikely even though they had small population. The studies suggest a male-mediated migration of Parsi ancestors from Iran to Gujarat where they admixed with local female population which ultimately resulting in loss of Iranian mtDNA. [17]

Dawoodi Bohras

Dawoodi Bohras of Gujarat show 47% genetic contribution from West Asia, especially Iran; followed by 30% from Arabia and from 23% closest Hindu parental populations. This shows considerable genetic flow from West Asia in them. [31]

Gujarati tribal

Four tribal populations (Chaudhari, Vasava, Kotwalia and Gamit) of the Surat district in South Gujarat were studied for the distribution of 22 polymorphic systems of the blood. The studies suggested that they are considerably hetero-genetic and have small genetic difference among them which is due to genetic variation. It also showed that Vasava and Kotwalia are closely related genetically, and Chaudhari and Gamit are different from them. [32]

Genetic distance(Fst) between Gujaratis and other South Asians

According to a 2016 study on "Population Stratification and Underrepresentation of Indian Subcontinent Genetic Diversity in the 1000 Genomes Project Dataset", It shows us that, Gujaratis (GIH Samples in 1000 genomes project) are closer to PJL (Punjabis from Lahore) samples (Fst=0.0036) and ITU (Telugu) samples (Fst=0.0039) than they are to STU (Sri Lankan Tamil) samples (Fst=0.0044) and BEB (Bengali) samples (Fst=0.0045). [12]

See also

Related Research Articles

Genetics and archaeogenetics of South Asia is the study of the genetics and archaeogenetics of the ethnic groups of South Asia. It aims at uncovering these groups' genetic history. The geographic position of South Asia makes its biodiversity important for the study of the early dispersal of anatomically modern humans across Asia.

In human genetics, Haplogroup J-M172 or J2 is a Y-chromosome haplogroup which is a subclade (branch) of haplogroup J-M304. Haplogroup J-M172 is common in modern populations in Western Asia, Central Asia, South Asia, Europe, Northwestern Iran and North Africa. It is thought that J-M172 may have originated between the Mesopotamia, Levant and/or Iran.

Haplogroup J (Y-DNA) Human Y-chromosome DNA haplogroup

Haplogroup J-M304, also known as J, is a human Y-chromosome DNA haplogroup. It is believed to have evolved in Western Asia. The clade spread from there during the Neolithic, primarily into North Africa, the Horn of Africa, Socotra, the Caucasus, Europe, West Asia, Central Asia, South Asia, and Southeast Asia.

Haplogroup H (Y-DNA) Human Y-chromosome DNA haplogroup

Haplogroup H (Y-DNA), also known as H-L901/M2939 is a Y-chromosome haplogroup.

Haplogroup K or K-M9 is a human Y-chromosome DNA haplogroup. A sublineage of haplogroup IJK, K-M9, and its descendant clades represent a geographically widespread and diverse haplogroup. The lineages have long been found among males on every continent.

Haplogroup L-M20 Human Y chromosome DNA grouping common in South Asia and the Mediterranean

Haplogroup L-M20 is a human Y-DNA haplogroup, which is defined by SNPs M11, M20, M61 and M185. As a secondary descendant of haplogroup K and a primary branch of haplogroup LT, haplogroup L currently has the alternative phylogenetic name of K1a, and is a sibling of haplogroup T.

Haplogroup R, or R-M207, is a Y-chromosome DNA haplogroup. It is both numerous and widespread amongst modern populations.

Haplogroup R2a, or haplogroup R-M124, is a Y-chromosome haplogroup characterized by genetic markers M124, P249, P267, L266, and is mainly found in South Asia as well as in Central Asia, Caucasus, Southwest Asia, and the Arab countries with low frequencies.

Burusho people Ethnolinguistic group of Kashmir, South Asia

The Burusho, or Brusho, also known as the Botraj, are an ethnolinguistic group indigenous to the Yasin, Hunza, Nagar and other valleys of Gilgit–Baltistan in northern Pakistan, with a smaller group of around 350 Burusho people residing in Jammu and Kashmir, India, as well. Their language, Burushaski, has been classified as a language isolate.

Genetic history of Europe Aspect of history

The most significant recent dispersal of modern humans from Africa gave rise to an undifferentiated "non-African" lineage by some 70–50 ka. By about 50–40 ka a basal West Eurasian lineage had emerged, as had a separate East Asian lineage. Both basal East and West Eurasians acquired Neanderthal admixture in Europe and Asia.

The various ethnolinguistic groups found in the Caucasus, Central Asia, Europe, the Middle East, North Africa and/or South Asia demonstrate differing rates of particular Y-DNA haplogroups.

Genetic history of the Middle East

The genetic history of the Middle East is the subject of research within the fields of human population genomics, archaeogenetics and Middle Eastern studies. Researchers use Y-DNA, mtDNA, and other autosomal DNAs to identify the genetic history of ancient and modern populations of Egypt, Persia, Mesopotamia, Anatolia, Arabia, the Levant, and other areas.

Haplogroup R1a, or haplogroup R-M420, is a human Y-chromosome DNA haplogroup which is distributed in a large region in Eurasia, extending from Scandinavia and Central Europe to southern Siberia and South Asia.

In human genetics, Haplogroup G (M201) is a Y-chromosome haplogroup

Peopling of India Immigration patterns of different races of people of India

The peopling of India refers to the migration of Homo sapiens into the Indian subcontinent. Anatomically modern humans settled India in multiple waves of early migrations, over tens of millennia. The first migrants came with the Coastal Migration/Southern Dispersal 65,000 years ago, whereafter complex migrations within south and southeast Asia took place. West-Eurasian hunter-gatherers migrated to South Asia after the Last Glacial Period but before the onset of farming. Together with a minor number of ancient South Asian hunter-gatherers they formed the population of the Indus Valley Civilisation (IVC).

Genetic studies on Sinhalese

Genetic studies on the Sinhalese is part of population genetics investigating the origins of the Sinhalese population.

Listed here are notable ethnic groups and populations from Western Asia, Egypt and South Caucasus by human Y-chromosome DNA haplogroups based on relevant studies. The samples are taken from individuals identified with the ethnic and linguistic designations in the first two columns, the third column gives the sample size studied, and the other columns give the percentage of the particular haplogroup. Some old studies conducted in the early 2000s regarded several haplogroups as one haplogroup, e.g. I, G and sometimes J were haplogroup 2, so conversion sometimes may lead to unsubstantial frequencies below.

Y-DNA haplogroups in populations of East and Southeast Asia

The tables below provide statistics on the human Y-chromosome DNA haplogroups most commonly found among ethnolinguistic groups and populations from East and South-East Asia.

Father Tongue hypothesis Hypothesis regarding languages

The Father Tongue hypothesis proposes that humans tend to speak their father's language. It is based on the discovery, in 1997, of a closer correlation between language and Y-chromosomal variation than between language and mitochondrial DNA variation. The initial work was performed on African and European samples by a team of population geneticists led by Laurent Excoffier. On the basis of these and similar findings by other geneticists, the hypothesis was elaborated by historical linguist George van Driem in 2010 that the teaching by a mother of her spouse's tongue to her children is a mechanism by which language has preferentially been spread over time.

References

  1. 1 2 "Gujarati Indians in Houston, Texas, USA [GIH]". Coriell Institute for Medical Research.
  2. Silva, Marina; Oliveira, Marisa; Vieira, Daniel; Brandão, Andreia; Rito, Teresa; Pereira, Joana B.; Fraser, Ross M.; Hudson, Bob; Gandini, Francesca; Edwards, Ceiridwen; Pala, Maria; Koch, John; Wilson, James F.; Pereira, Luísa; Richards, Martin B.; Soares, Pedro (2017). "A genetic chronology for the Indian Subcontinent points to heavily sex-biased dispersals". BMC Evolutionary Biology. 17 (1): 88. doi:10.1186/s12862-017-0936-9. ISSN   1471-2148. PMC   5364613 . PMID   28335724.
  3. Pandit, Lekha; D'Cunha, Anitha; Malli, Chaithra (2017). "Genetic variations in the Dravidian population of South West coast of India: Implications in designing case-control studies". Indian Journal of Medical Research. 145 (6): 753–757. doi:10.4103/ijmr.IJMR_1435_15. ISSN   0971-5916. PMC   5674545 . PMID   29067977.
  4. Ayub, Qasim; Mezzavilla, Massimo; Pagani, Luca; Haber, Marc; Mohyuddin, Aisha; Khaliq, Shagufta; Mehdi, Syed Qasim; Tyler-Smith, Chris (2015). "The Kalash Genetic Isolate: Ancient Divergence, Drift, and Selection". The American Journal of Human Genetics. 96 (5): 775–783. doi:10.1016/j.ajhg.2015.03.012. ISSN   0002-9297. PMC   4570283 . PMID   25937445.
  5. Ali, Mohammad; Liu, Xuanyao; Pillai, Esakimuthu; Chen, Peng; Khor, Chiea-Chuen; Ong, Rick Twee-Hee; Teo, Yik-Ying (2014). "Characterizing the genetic differences between two distinct migrant groups from Indo-European and Dravidian speaking populations in India". BMC Genetics. 15 (1): 86. doi:10.1186/1471-2156-15-86. ISSN   1471-2156. PMC   4120727 . PMID   25053360.
  6. Pemberton, Trevor J.; DeGiorgio, Michael; Rosenberg, Noah A. (2013). "Population Structure in a Comprehensive Genomic Data Set on Human Microsatellite Variation". G3: Genes, Genomes, Genetics. 3 (5): 891–907. doi:10.1534/g3.113.005728. ISSN   2160-1836. PMC   3656735 . PMID   23550135.
  7. Ellegren, Hans; Magalhães, Tiago R.; Casey, Jillian P.; Conroy, Judith; Regan, Regina; Fitzpatrick, Darren J.; Shah, Naisha; Sobral, João; Ennis, Sean (2012). "HGDP and HapMap Analysis by Ancestry Mapper Reveals Local and Global Population Relationships". PLOS ONE. 7 (11): e49438. Bibcode:2012PLoSO...749438M. doi: 10.1371/journal.pone.0049438 . ISSN   1932-6203. PMC   3506643 . PMID   23189146.
  8. 1 2 Metspalu, Mait; Romero, Irene Gallego; Yunusbayev, Bayazit; Chaubey, Gyaneshwer; Mallick, Chandana Basu; Hudjashov, Georgi; Nelis, Mari; Mägi, Reedik; Metspalu, Ene; Remm, Maido; Pitchappan, Ramasamy; Singh, Lalji; Thangaraj, Kumarasamy; Villems, Richard; Kivisild, Toomas (2011). "Shared and Unique Components of Human Population Structure and Genome-Wide Signals of Positive Selection in South Asia". The American Journal of Human Genetics. 89 (6): 731–744. doi:10.1016/j.ajhg.2011.11.010. ISSN   0002-9297. PMC   3234374 . PMID   22152676.
  9. Xing, Jinchuan; Watkins, W Scott; Hu, Ya; Huff, Chad D; Sabo, Aniko; Muzny, Donna M; Bamshad, Michael J; Gibbs, Richard A; Jorde, Lynn B; Yu, Fuli (2010). "Genetic diversity in India and the inference of Eurasian population expansion". Genome Biology. 11 (11): R113. doi:10.1186/gb-2010-11-11-r113. ISSN   1465-6906. PMC   3156952 . PMID   21106085.
  10. Paschou, P.; Lewis, J.; Javed, A.; Drineas, P. (2010). "Ancestry informative markers for fine-scale individual assignment to worldwide populations". Journal of Medical Genetics. 47 (12): 835–847. CiteSeerX   10.1.1.846.8202 . doi:10.1136/jmg.2010.078212. ISSN   0022-2593. PMID   20921023. S2CID   6432430.
  11. Reich, David; Thangaraj, Kumarasamy; Patterson, Nick; Price, Alkes L.; Singh, Lalji (2009). "Reconstructing Indian population history". Nature. 461 (7263): 489–494. Bibcode:2009Natur.461..489R. doi:10.1038/nature08365. ISSN   0028-0836. PMC   2842210 . PMID   19779445.
  12. 1 2 Sengupta, Dhriti; Choudhury, Ananyo; Basu, Analabha; Ramsay, Michèle (2016). "Population Stratification and Underrepresentation of Indian Subcontinent Genetic Diversity in the 1000 Genomes Project Dataset". Genome Biology and Evolution. 8 (11): 3460–3470. doi:10.1093/gbe/evw244. ISSN   1759-6653. PMC   5203783 . PMID   27797945.
  13. Basu, Analabha; Sarkar-Roy, Neeta; Majumder, Partha P. (2016). "Genomic reconstruction of the history of extant populations of India reveals five distinct ancestral components and a complex structure" (PDF). Proceedings of the National Academy of Sciences. 113 (6): 1594–1599. Bibcode:2016PNAS..113.1594B. doi: 10.1073/pnas.1513197113 . ISSN   0027-8424. PMC   4760789 . PMID   26811443.
  14. Moorjani, Priya; et al. (2013). "Genetic Evidence for Recent Population Mixture in India". The American Journal of Human Genetics. 93 (3): 422–438. doi:10.1016/j.ajhg.2013.07.006. PMC   3769933 . PMID   23932107.
  15. Metspalu, Mait; Kivisild, Toomas; Metspalu, Ene; Parik, Jüri; Hudjashov, Georgi; Kaldma, Katrin; Serk, Piia; Karmin, Monika; Behar, Doron M. (2004-01-01). "Most of the extant mtDNA boundaries in South and Southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans". BMC Genetics. 5: 26. doi:10.1186/1471-2156-5-26. ISSN   1471-2156. PMC   516768 . PMID   15339343.
  16. 1 2 3 Maji, Suvendu; Krithika, S.; Vasulu, T. S. (2008). "Distribution of mitochondrial DNA macrohaplogroup N in India with special reference to haplogroup R and its sub-haplogroup U." (PDF). International Journal of Human Genetics. 8 (1–2): 85–96. doi:10.1080/09723757.2008.11886022. S2CID   14231815.
  17. 1 2 3 4 Quintana-Murci, Lluís; Chaix, Raphaëlle; Wells, R. Spencer; Behar, Doron M.; Sayar, Hamid; Scozzari, Rosaria; Rengo, Chiara; Al-Zahery, Nadia; Semino, Ornella (2004). "Where West Meets East: The Complex mtDNA Landscape of the Southwest and Central Asian Corridor". The American Journal of Human Genetics. 74 (5): 827–845. doi:10.1086/383236. PMC   1181978 . PMID   15077202.
  18. 1 2 3 Gress, Priti Chitnis (31 August 2004). "Gujarati Genetics - DNA of Gujaratis of India". Khazaria.com. Retrieved 10 March 2017.
  19. Rootsi, Siiri; Behar, Doron M.; Järve, Mari; Lin, Alice A.; Myres, Natalie M.; Passarelli, Ben; Poznik, G. David; Tzur, Shay; Sahakyan, Hovhannes (2013-12-17). "Phylogenetic applications of whole Y-chromosome sequences and the Near Eastern origin of Ashkenazi Levites". Nature Communications. 4: 2928. Bibcode:2013NatCo...4.2928R. doi:10.1038/ncomms3928. ISSN   2041-1723. PMC   3905698 . PMID   24346185.
  20. Khurana, Priyanka; Aggarwal, Aastha; Mitra, Siuli; Italia, Yazdi M.; Saraswathy, Kallur N.; Chandrasekar, Adimoolam; Kshatriya, Gautam K. (2014-03-10). "Y Chromosome Haplogroup Distribution in Indo-European Speaking Tribes of Gujarat, Western India". PLOS ONE. 9 (3): e90414. Bibcode:2014PLoSO...990414K. doi: 10.1371/journal.pone.0090414 . ISSN   1932-6203. PMC   3948632 . PMID   24614885.
  21. Sanjeev Sanyal; Sowmya Rajendran (28 November 2017). The Incredible History of India's Geography. Penguin Random House India Private Limited. p. 24. ISBN   978-93-5118-932-9.
  22. Verma, Ram S.; Rodriguez, Jorge; Dosik, Harvey (1982-05-01). "The clinical significance of pericentric inversion of the human Y chromosome: a rare "third" type of heteromorphism". Journal of Heredity. 73 (3): 236–238. doi:10.1093/oxfordjournals.jhered.a109627. ISSN   0022-1503. PMID   6212612.
  23. Spurdle, Amanda; Jenkins, Trefor (1992). "The Inverted Y-Chromosome Polymorphism in the Gujarati Muslim Indian Population of South Africa Has a Single Origin". Human Heredity. 42 (5): 330–332. doi:10.1159/000154093. PMID   1459580.
  24. Bernstein, R.; Wadee, A.; Rosendorff, J.; Wessels, A.; Jenkins, T. (1986). "Inverted Y chromosome polymorphism in the Gujerati Muslim Indian population of South Africa". Human Genetics. 74 (3): 223–9. doi:10.1007/bf00282538. PMID   3781558. S2CID   38020547.
  25. Laddha, Naresh C.; Dwivedi, Mitesh; Shajil, E.M.; Prajapati, Hiral; Marfatia, Y.S.; Begum, Rasheedunnisa (2008). "Association of PTPN22 1858C/T polymorphism with vitiligo susceptibility in Gujarat population". Journal of Dermatological Science. 49 (3): 260–262. doi:10.1016/j.jdermsci.2007.10.002. PMID   18037273.
  26. "DNA variation that makes Gujaratis susceptible to vitiligo identified". The Times of India. 5 December 2014. Retrieved 10 March 2017.
  27. EM, Shajil; Laddha, Naresh C.; Chatterjee, Sreejatha; Gani, Amina R.; Malek, Reem A.; Shah, Bela J.; Begum, Rasheedunnisa (2007). "Association of catalase T/C exon 9 and glutathione peroxidase codon 200 polymorphisms in relation to their activities and oxidative stress with vitiligo susceptibility in Gujarat population". Pigment Cell Research. 20 (5): 405–407. doi:10.1111/j.1600-0749.2007.00406.x. PMID   17850515.
  28. Thein, S. L.; Old, J. M.; Wainscoat, J. S.; Petrou, M.; Modell, B.; Weatherall, D. J. (1984-06-01). "Population and genetic studies suggest a single origin for the Indian deletion β° thalassaemia". British Journal of Haematology. 57 (2): 271–278. doi:10.1111/j.1365-2141.1984.tb02896.x. ISSN   1365-2141. PMID   6329257. S2CID   13519331.
  29. Young, I. D.; Rickett, A. B.; Clarke, M. (1985-08-01). "High incidence of Meckel's syndrome in Gujarati Indians". Journal of Medical Genetics. 22 (4): 301–304. doi:10.1136/jmg.22.4.301. ISSN   0022-2593. PMC   1049454 . PMID   4045959.
  30. Pemberton, Trevor J.; Li, Fang-Yuan; Hanson, Erin K.; Mehta, Niyati U.; Choi, Sunju; Ballantyne, Jack; Belmont, John W.; Rosenberg, Noah A.; Tyler-Smith, Chris; Patel, Pragna I. (2012). "Impact of restricted marital practices on genetic variation in an endogamous Gujarati group". American Journal of Physical Anthropology. 149 (1): 92–103. doi:10.1002/ajpa.22101. PMC   3436606 . PMID   22729696.
  31. Eaaswarkhanth, Muthukrishnan; Dubey, Bhawna; Meganathan, Poorlin Ramakodi; Ravesh, Zeinab; Khan, Faizan Ahmed; Singh, Lalji; Thangaraj, Kumarasamy; Haque, Ikramul (2009). "Diverse genetic origin of Indian Muslims: evidence from autosomal STR loci". Journal of Human Genetics. 54 (6): 340–348. doi: 10.1038/jhg.2009.38 . PMID   19424286. S2CID   153224.
  32. Bhasin, M.K.; Singh, Indera P.; Sudhakar, K.; Bhardwaj, Veena; Chahal, S.M.S.; Walter, H.; Dannewitz, Angela (1985). "Genetic studies in four tribal populations of the Surat District, Gujarat (India)". Annals of Human Biology. 12 (1): 27–39. doi:10.1080/03014468500007541. PMID   3977282.