Genetic history of North Africa

Last updated

The genetic history of North Africa encompasses the genetic history of the people of North Africa. The most important source of gene flow to North Africa from the Neolithic Era onwards was from Western Asia, while the Sahara desert to the south and the Mediterranean Sea to the North were also important barriers to gene flow from sub-Saharan Africa and parts of Europe in prehistory. However, North Africa is connected to Western Asia via the Isthmus of Suez and the Sinai peninsula, while at the Straits of Gibraltar, North Africa and Europe are separated by only 15 km (9 mi), similarly Malta, Sicily, Canary Islands, Lampedusa and Crete are close to the coasts of North Africa.

Contents

North Africa is a genetically heterogenous and diverse region, and is characterized by its diverse ethnic groups, the main ones being Arabs, Berbers and Copts (in Egypt). [1] North African populations show a complex and heterogeneous genetic structure that has been described as an amalgam of at least four different ancestral components from the Middle East, sub-Saharan Africa, Europe and also indigenous North Africans who are distinct from these three. [2] Although North Africa has experienced gene flows from the surrounding regions, it has also experienced long periods of genetic isolation. [3] Some genetic studies have been criticised for their interpretation and categorisation of African genetic data. [4] [5] [6] [7] [8] [9] [10]

Current scientific debate is concerned with determining the relative contributions of different periods of gene flow to the current gene pool of North Africans. Anatomically modern humans are known to have been present in North Africa during the Middle Paleolithic (300,000 years ago), as attested by the by Jebel Irhoud 1. [11] Without morphological discontinuity, the Aterian was succeeded by the Iberomaurusian industry, whose lithic assemblages bore close relations with the Cro-Magnon cultures of Europe and Western Asia, rather than to the contemporary cultures of sub-Saharan Africa or the Horn of Africa. [12] The Iberomaurusian industry was succeeded by the heavily West Asian influenced Capsian industry (8000 BCE to 2700 BCE) in the eastern part of North Africa (Egypt, Libya, Tunisia, eastern Algeria, Malta).

After migrating to North Africa in the 1st millennium BC, Semitic Phoenician settlers from the cities of Tyre and Sidon in the Levant established over 300 coastal colonies throughout the region (as well as the Iberian peninsula, Sicily, Malta, Sardinia etc) and built a powerful empire that controlled most of the region from the 8th century BC until the middle of the 2nd century BC. [13] A recent study has found that nearly 40% of modern Maghrebi males carry the paternal marker E-M81, which is thought to have expanded from the Levant into North Africa. [14]

In the 7th century A.D., the region was conquered by Muslim Umayyad Arabs from the Arabian Peninsula. Under the relatively brief Arab-Umayyad conquest and the later arrival of nomadic Bedouin, Levantine Arabs and Arabized peoples from the Near East in Western Asia and the arrival of some Sephardi Jews and Iberian Muslims fleeing the Spanish Catholic Reconquista of Iberia, a partial population mix or fusion have taken place and have resulted in some genetic diversity among some North Africans. [15]

A recent study from 2017 suggested that the Arab migrations to the Maghreb was mainly a demographic process that heavily implied gene flow and remodeled the genetic structure of the Maghreb, rather than a mere cultural replacement as claimed by older studies. [16] Another study found out that the majority of J-M267 (Eu10) chromosomes in the Maghreb are due to the recent gene flow caused by the Arab migrations to the Maghreb in the first millennium CE as both southern Qahtanite and northern Adnanite Arabs added to the heterogenous Maghrebi ethnic melting pot. The Eu10 chromosome pool in the Maghreb is derived not only from early Neolithic dispersions but to a much greater extent from recent expansions of Arab tribes from the Arabian Peninsula. [17]

Y-DNA of ancient North African samples

NameCountryCultureDate

(Before Present)

Y-DNA Haplogroup Genetic ProfileStudy
TAF009MoroccoIberomaurusian15,100-13,900 E-M78 Afro-LevantineLoosdrecht et al. 2018 [18]
TAF010MoroccoIberomaurusian15,100-13,900 E-M78 Afro-LevantineLoosdrecht et al. 2018 [18]
TAF011MoroccoIberomaurusian15,100-13,900 E-M78 Afro-LevantineLoosdrecht et al. 2018 [18]
TAF012MoroccoIberomaurusian15,100-13,900 E-M78 Afro-LevantineLoosdrecht et al. 2018 [18]
TAF013MoroccoIberomaurusian15,100-13,900 E-M78 Afro-LevantineLoosdrecht et al. 2018 [18]
TAF015MoroccoIberomaurusian15,100-13,900 E-M78 Afro-LevantineLoosdrecht et al. 2018 [18]
KTG004MoroccoCardial7,400-6,900 G2 EuropeanSimoes et al. 2023 [19]
KTG006MoroccoCardial7,400-6,900 G2 EuropeanSimoes et al. 2023 [19]
IAM.4MoroccoCardial7,300-6,700 E-L19 LevantineFregel et al. 2018 [20]
IAM.5MoroccoCardial7,300-6,700 E-L19 LevantineFregel et al. 2018 [20]
SKH002MoroccoProto-Beaker6,700-6,100 T LevantineSimoes et al. 2023 [19]
SKH005MoroccoProto-Beaker6,700-6,100 T LevantineSimoes et al. 2023 [19]
KEB.6MoroccoProto-Beaker5,700-5,600 T EuropeanFregel et al. 2018 [20]
KEB.7MoroccoProto-Beaker5,700-5,600 CT EuropeanFregel et al. 2018 [20]
Nakht-Ankh EgyptEgyptian4,000 H UnknownDrosou et al. 2018 [21]
Tuthmoses 1 EgyptEgyptian3,450 J1 UnknownGad et al. 2021 [22]
Yuya EgyptEgyptian3,390 G2 UnknownGad et al. 2021 [22]
Amenhotep III EgyptEgyptian3,370 R1b UnknownGad et al. 2021 [22]
Akhenaten EgyptEgyptian3,350 R1b UnknownGad et al. 2021 [22]
Tutankhamun EgyptEgyptian3,340 R1b UnknownGad et al. 2021 [22]
Ramses III EgyptEgyptian3,200 E-V38 UnknownGad et al. 2021 [22]
Pentawer EgyptEgyptian3,200 E-V38 UnknownGad et al. 2021 [22]
JK2134EgyptEgyptian2,798-2,591 J1 LevantineSchuenemann et al. 2017 [23]
JK2911EgyptEgyptian2,791-2,582 J2 LevantineSchuenemann et al. 2017 [23]
R11793TunisiaPhoenician2,711-2,355 J2 EuropeanMoots et al. 2023 [24]
R11746TunisiaPhoenician2,683-2,361 R1b EuropeanMoots et al. 2023 [24]
R11751TunisiaPhoenician2,678-2,359 J2 EuropeanMoots et al. 2023 [24]
R11753TunisiaPhoenician2,606-2,355 J2 EuropeanMoots et al. 2023 [24]
JK2888EgyptEgyptian2,119-2,024 E-V22 LevantineSchuenemann et al. 2017 [23]
R10766AlgeriaBerber1,887-1,746 G2 BerberAntonio et al. 2022 [25]

Y-chromosome

Previous works with Y-chromosome markers have shown that North Africa is highly heterogenous, the Y lineages found in the region are: A, B, E-V38, E-M78, E-M81, E-M123, G, F, H, I1, I2, J1, J2 and R1b. E-M81 reaches an average frequency of 40% across the region. [26] J-M267 is the second most-frequent haplogroup, accounting for around 30% of North Africans and assumed to have spread out of the Arabian Peninsula or Levant into North Africa. [27]

Haplogroup E is thought to have emerged in the Paleolithic Levant, and would have later dispersed into North Africa. [28] Common subclades include E1b1b1a, E1b1b1b and E1b1b1*. E1b1b1b is distributed along a west-to-east cline with frequencies that can reach as high as 80 per cent among Hassani Arabs and 1% among Siwa Berbers. E1b1b1a has been observed at low to moderate frequencies among Berber populations with significantly higher frequencies observed in Northeast Africa relative to Northwest Africa. [29] [30] [31] Loosdrecht et al. 2018 demonstrated that E1b1b is most likely indigenous to Levant and migrated from Levant to North Africa during the Paleolithic. [3]

Haplogroup J-M267 is another very common haplogroup in the Maghreb, being the second most-frequent haplogroup after haplogroup E. [17] Haplogroup R1 has also been observed at moderate frequencies. A thorough study by Arredi et al. (2004), which analyzed populations from Algeria, concludes that the North African pattern of Y-chromosomal variation (including both J1 and E1b1b main haplogroups) is largely of ([West Asian]] origin, which suggests that their introduction in this part of the world was to a great extent the result of a migration of recent Semitic pastoralists from the Middle East, [29] although more recent papers have suggested that this date could have been as long as ten thousand years ago during the Neolithic, with the transition from the Oranian to the West Asian originating Capsian culture in North Africa. [32] Another study concluded that the J-M267 chromosome pool in the Maghreb is derived not only from early Neolithic dispersions from Levant, Mesopotamia and Anatolia but to a much greater extent from recent expansions of Arab tribes from the Arabian Peninsula during the Arab migrations to the Maghreb. [17]

Keita (2008) examined a published Y-chromosome dataset on Afro-Asiatic populations and found that a key lineage E-M35/E-M78, sub-clade of haplogroup E, was shared between the populations in the locale of original Egyptian and Libyan speakers and modern Cushitic speakers from the Horn of Africa. These lineages are present in modern Egyptians, Berbers, Cushitic speakers from the Horn of Africa, and Semitic speakers in Western Asia. He noted that variants are also found in the Aegean and Balkans, but the origin of the M35 subclade mutation was in Egypt or Libya, and its clades were dominant in a core portion of Afro-Asiatic speaking populations which included Cushitic, Egyptian and Berber groups,and in Semitic speakers, but showed a decline in frequency among Semites going west to east in the Levantine-Syria-Mesopotamia region. Keita identified high frequencies of M35 (>50%) among Omotic populations, but stated that this only derived from a small, published sample of 12. Keita also wrote that the PN2 mutation was shared by M35 and M2 lineages and he believed this paternal clade originated from prehistoric East Africa. He concluded that "the genetic data give population profiles that clearly indicate males of African origin, as opposed to being of Asian or European descent" but acknowledged that the biodiversity does not indicate any specific set of skin colours, racial types or facial features as populations were subject to microevolutionary pressures. [33]

E1b1b1b (Haplogroup E-M81); formerly E3b1b, E3b2

E1b1b1b (E-M81) is the most common Y chromosome haplogroup in North Africa, dominated by its sub-clade E-M183. It might have originated in the Levant around 5,600 years ago. [34] [14] The parent clade, E1b1b, has been found among Prehistoric Levantines, Mesopotamians, Anatolians and North-Africans. [28] [35] This haplogroup has been found at high levels in Medieval Arabs from Al-Andalus and among Canary islands which were inhabited by Berber Guanch people, with lower but significant amounts also in Portugal, Southern Spain, Southern Italy and the Provence region of France. [36] As a result of European colonization, E-M81 is found in parts of Latin America, [37] among Hispanic in USA. [38] This sub-clade of E1b1b1 has also been observed at 40 per cent in the comarca Pasiegos from Cantabria. [28]

In smaller numbers, E-M81 men can be found in Malta, Northern Sudan, Cyprus and among Sephardic Jews.

There are two recognized sub-clades, although one is much more common than the other.

Sub clades of E1b1b1b (E-M81):

The general parent Y-chromosome Haplogroup E1b1b (formerly known as E3b), which originated in the Levant and is by far the most common clade in North and Northeast Africa and found in some populations in Europe, particularly in the Mediterranean and South Eastern Europe. E1b1b reaches Greece, Malta and the Balkan region in Europe but is not as high there as it is among North African populations. [29] Outside of North and Northeast Africa, E1b1b's two most prevalent clades are E1b1b1a (E-M78, formerly E3b1a) and E1b1b1b (E-M81, formerly E3b1b).

A study from Semino (published 2004) showed that Y-chromosome haplotype E1b1b1b (E-M81), is specific to North African populations and almost absent in Europe, Western Asia and sub-Saharan Africa, except in the European regions of Iberia (Spain, Portugal, Gibraltar, Andorra) and Sicily. [29] Another 2004 study showed that E1b1b1b is found present, albeit at low levels throughout Southern Europe (ranging from 1.5 per cent in Northern Italians, 2.2 per cent in Central Italians, 1.6 per cent in Southern Spaniards, 3.5 per cent in the French, 4 per cent in the Northern Portuguese, 12.2 per cent in the Southern Portuguese and 41.2 per cent in the genetic isolate of the Pasiegos from Cantabria in Italy). [28]

The findings of this latter study contradict a more thorough analysis Y-chromosome analysis of the Iberian peninsula according to which haplogroup E1b1b1b surpasses frequencies of 10 per cent in Southern Spain and southern Portugal. The study points only to a very limited influence from Northern Africa and West Asia in Iberia, both in historic and prehistoric times. [36] [29] [40]

A wide-ranging study (published 2007) using 6,501 unrelated Y-chromosome samples from 81 populations found that: "Considering both these E-M78 sub-haplogroups (E-V12, E-V22, E-V65) and the E-M81 haplogroup, the contribution of Northern African lineages to the entire male gene pool of Iberia (barring Pasiegos), continental Italy and Sicily can be estimated as 5.6 percent, 3.6 percent and 6.6 percent, respectively." [41] It has also been argued that the European distribution of E-M78 and its sub-clades is compatible with the Neolithic demic diffusion of agriculture, but also possibly partly from at least, the Mesolithic. For example, Battaglia et al. (2008) estimated that E-M78 (called E1b1b1a1 in that paper) has been in Europe longer than 10,000 years. In support of this theory, human remains excavated in a Spanish funeral cave dating from approximately 7,000 years ago were shown to be in this haplogroup. [42] More recently, two E-M78 have been found in the Neolithic Sopot and Lengyel cultures from the same period in Poland, [43] [44] which seems supported by the most recent studies (including autosomal research).

A very recent study about Sicily by Gaetano et al. 2008 found that "The Hg E3b1b-M81, widely diffused in northwestern African populations, is estimated to contribute to the Sicilian gene pool at a rate of 6 percent." [45]

According to the most recent and thorough study about Iberia by Adams et al. 2008 that analysed 1,140 unrelated Y-chromosome samples in Iberia, a limited contribution of northern African lineages to the entire male gene pool of Iberia was found : "mean North African admixture is just 10.6 percent, with wide geographical variation, ranging from zero in Gascony to 21.7 percent in Northwest Castile". [46]

J-M267 (Haplogroup J1)

Distribution of Haplogroup J (Y-DNA) Haplogrupo J (Y-DNA).png
Distribution of Haplogroup J (Y-DNA)

J-M267 (J1) is the second most common Y chromosome haplogroup in North Africa. It originated in the Middle East, and its highest frequency of 30%–62.5% has been observed in Arab, Assyrians, Mandean, Mizrahi and Georgian populations in Western Asia and south Caucasus. [17] A study found out that the majority of J1 (Eu10) chromosomes in the Maghreb are due to the recent gene flow caused by the Arab migrations to the Maghreb in the first millennium CE, although some may be from pre-Arab migrations dating from the Neolithic onwards. The J-M267 chromosome pool in the Maghreb is derived not only from early non-Arab Neolithic dispersions but to a much greater extent from recent expansions of Arab tribes from the Arabian Peninsula, during which both southern Qahtanite and northern Adnanite Arabs added to the heterogenous Maghrebi ethnic melting pot. [17] A study from 2017 suggested that these Arab migrations were a demographic process that heavily implied gene flow and remodeled the genetic structure of the Maghreb, rather than a mere cultural replacement as claimed by older studies. [1]

Recent genome-wide analysis of North Africans found substantial shared ancestry with the Middle East dating back to at least the Neolithic, and to a lesser extent sub-Saharan Africa and Europe. The recent gene flow caused by the Arab migrations to the Maghreb increased these already extant genetic similarities between North Africans and Middle Easterners. [47] Haplogroup J1-M267 accounts for around 30% of North Africans and has spread from the Arabian Peninsula and Levant, second after E1b1b1b which accounts for 45% of North Africans. A study from 2021 has shown that the highest frequency of the Middle Eastern component ever observed in North Africa so far was observed in the Arabs of Wesletia in Tunisia, who had a Middle Eastern component frequency of 71.8%. [48] According to a study from 2004, Haplogroup J1 had a frequency of 35% in Algerians and 34.2% in Tunisians. [49]

Mitochondrial DNA

Individuals receive mtDNA only from their mothers. According to Macaulay et al. 1999, "one-third (33%) of Mozabite Berber mtDNAs have a Near Eastern ancestry, probably having arrived in North Africa less than 50,000 years ago, and one-eighth (12.5%) have an origin in sub-Saharan Africa. Europe appears to be the source of many of the remaining sequences, with the rest having arisen either in Europe or in the Near East". [50] Maca-Meyer et al. 2003 analyze the "autochthonous North African lineage U6" in mtDNA, and conclude that:

The most probable origin of the proto-U6 lineage was the Near East. Around 30,000 years ago it spread to North Africa where it represents a signature of regional continuity. Subgroup U6a reflects the first North African expansion from the Maghreb returning to the east in Paleolithic times. Derivative clade U6a1 signals a posterior movement from Western Asia back to the Maghreb and North Africa. This migration coincides with a possible Afroasiatic linguistic expansion.

A genetic study by Fadhlaoui-Zid et al. 2004 [51] argues concerning certain exclusively North African haplotypes that "expansion of this group of lineages took place around 10,500 years ago in North Africa, and spread to neighbouring population", and apparently that a specific Northwestern African haplotype, U6, probably originated in the Near East 30,000 years ago accounts for 28 per cent in Mozabites, 18 per cent in Kabyles, but only accounts for 6-8 per cent in the southern Moroccan Berbers. Rando et al. 1998 "detected female-mediated gene flow from sub-Saharan Africa to NW Africa" amounting to as much as 21.5 per cent of the mtDNA sequences in a sample of NW African populations; [44] the amount varied from 82 per cent in Tuaregs to less than 3 per cent in Riffians in north of Morocco. This north-south gradient in the sub-Saharan contribution to the gene pool is supported by Esteban et al. [52]

Nevertheless, individual Berber communities display a considerably high mtDNA heterogeneity among them. The Berbers of Jerba Island, located in South Eastern Tunisia, display an 87 per cent West Eurasian contribution with no U6 haplotypes, [53] while the Kesra of Tunisia, for example, display a much higher proportion of typical sub-Saharan mtDNA haplotypes (49 per cent), [54] as compared to the Zriba (8 per cent). According to the article, "The North African patchy mtDNA landscape has no parallel in other regions of the world and increasing the number of sampled populations has not been accompanied by any substantial increase in our understanding of its phylogeography. Available data up to now rely on sampling small, scattered populations, although they are carefully characterized in terms of their ethnic, linguistic, and historical backgrounds. It is therefore doubtful that this picture truly represents the complex historical demography of the region rather than being just the result of the type of samplings performed so far."

A 2005 study discovered a close mitochondrial link between Berbers and the Uralic speaking Saami of northern Scandinavia and the sub-Arctic, and argues that Southwestern Europe and North Africa was the source of late-glacial expansions of hunter-gatherers that repopulated Northern Europe after a retreat south during the Last Glacial Maximum, and reveals a direct maternal link between those European hunter-gatherer populations and the Berbers. [55] With regard to Mozabite Berbers, one-third (33%) of Mozabite Berber mtDNAs have a Near Eastern ancestry, probably having arrived in North Africa ~50,000 years ago, and one-eighth (12.5%) have an origin in sub-Saharan Africa. Europe appears to be the source of many of the remaining sequences, with the rest (54.5%) having arisen either in Europe or in the Near East." [50]

According to the most recent and thorough study on Berber mtDNA from Coudray et al. 2008, which analysed 614 individuals from 10 different regions (Morocco (Asni, Bouhria, Figuig, Souss), Algeria (Mozabites), Tunisia (Chenini-Douiret, Sened, Matmata, Jerba) and Egypt (Siwa)), [56] the results may be summarized as follows:

The Berber mitochondrial pool is characterized by an overall high frequency of Western Eurasian haplogroups, a markedly lower frequency of sub-Saharan L lineages, and a significant (but differential) presence of North African haplogroups U6 and M1.

There is a degree of dispute about when and how the minority sub-Saharan L haplogroups entered the North African gene pool. Some papers suggest that the distribution of the main L haplogroups in North Africa was mainly due to the Islamic era trans-Saharan slave trade, as espoused by Harich et .al in a study conducted in 2010. [57] However, also in September 2010, a study of Berber mtDNA by Frigi et al. concluded that some of the L haplogroups were much older and introduced by an ancient African gene flow around 20,000 years ago. [58]

Genetic studies on Iberian populations also show that North African mitochondrial DNA sequences (haplogroup U6) and sub-Saharan sequences (Haplogroup L), although present at only low levels, are still at higher levels than those generally observed elsewhere in Europe, though very likely, most of the L mtDNA that has been found in minor amounts in Iberia, is actually pre-neolithic in origin, as it was demonstrated by María Cerezo et al., (Reconstructing ancient mitochondrial DNA links between Africa and Europe) and U6 too, which also have a very old presence in Iberia, since Iberia has a great diversity in lineages from this haplogroup, it was already found in some local hunter-gatherer remains and its local geographic distribution is not compatible, in many cases, with Moor occupation area. [59] [60] [61] Haplogroup U6 have also been detected in Sicily and Southern Italy at much lower frequencies. [62] It happens also to be a characteristic genetic marker of the Saami populations of Northern Scandinavia. [55]

It is difficult to ascertain that U6's presence is the consequence of Islam's expansion into Europe during the Middle Ages, particularly because it is more frequent in the west of the Iberian Peninsula rather than in the east. In smaller numbers it is also attested in the British Isles, again in its northern and western borders. It may be a trace of a prehistoric Neolithic/Megalithic/Mesolithic or even Upper Paleolithic expansion along the Atlantic coasts from North Africa or Iberian Peninsula, perhaps in conjunction with seaborne trade, although an alternative, but less likely explanation, would attribute this distribution in Northern Britain to the Roman period. One subclade of U6 is particularly common among Canarian Spaniards as a result of native Guanche (proto-Berber) ancestry.[ citation needed ]

Autosomal DNA

On 13 January 2012, an exhaustive genetic study of North Africa's human populations was published in PLoS Genetics and was undertaken jointly by researchers in the Evolutionary Biology Institute (CSIC-UPF) and Stanford University, among other institutions. [63]

The study highlights the complex genetic makeup of North Africa. This genetic composition shows a significant local component that became more distinct around 12,000 years ago, possibly influenced by migrations, population expansions, or other demographic events. According to David Comas, coordinator of the study and researcher at the Institute for Evolutionary Biology (CSIC-UPF), "some of the questions we wanted to answer were whether today's inhabitants are direct descendants of the populations with the oldest archaeological remains in the region, dating back fifty thousand years, or whether they are descendants of the Neolithic populations in the Middle East, which introduced agriculture to the region around nine thousand years ago. We also wondered if there had been any genetic exchange between the North African populations and the neighbouring regions and if so, when these took place". [64]

To explore these questions, the research team analyzed nearly 800,000 genetic markers across the entire genomes of 125 North African individuals from seven representative populations. This data was then juxtaposed with information from neighboring populations. [64]

The findings reveal a distinct native genetic component in North Africans, setting them apart from sub-Saharan Africans and aligning them more closely with West-Eurasians, primarily Middle Easterners and Europeans. Though the study emphasizes a dominant genetic lineage in contemporary North Africans tracing back to around 12,000 years ago, it doesn't dismiss the likelihood of genetic continuity from ancient human groups present in North Africa over 60,000 years ago. The data suggests that while ancient human groups indeed inhabited the region, the majority of the modern identifiable genetic makeup stems from more recent periods. The unique North African (Maghrebi) genetic signature is distinct from ancestries found in the populations of sub-Saharan Africa. Modern North African populations were observed to share genetic markers in varying degrees with all the neighbouring regions (Southern Europe, West Asia, sub-Saharan Africa), probably as a result of more recent migrations. [64]

Hodgson et al. 2014 found a distinct non-African ancestry component among Northeastern Africans (dubbed "Ethio-Somali"), which split from other West-Eurasian ancestries, and is most closely related to the North African (Maghrebi), and Arabian ancestry components. Both would have entered Africa during a pre-agricultural period (between 12,000 to 23,000 years ago). This component is suggested to have been present in considerable amounts among the Proto-Afroasiatic-speaking peoples. The authors argue that the Ethio-Somali component and the Maghrebi component descended from a single ancestral lineage, which split from the Arabian lineage and migrated into Africa from the Middle East. That is, a common ancestral population migrated into Africa through Sinai and then split into two, with one branch continuing west across North Africa and the other heading south into the HOA. [65]

A 2015 study by Dobon et al. identified another ancestral autosomal component of West Eurasian origin that is common to many modern Afro-Asiatic-speaking populations in Northeast Africa. Known as the Coptic component, it peaks among Egyptian Copts, including those who settled in Sudan over the past two centuries. The Coptic component evolved out of a main North African and Middle Eastern ancestral component that is shared by other Egyptians and also found at high frequencies among other populations in Northern Africa. The scientists suggest that this points to a common origin for the general population of Egypt. They also associate the Coptic component with Ancient Egyptian ancestry, without the later minority Medieval Era Arabian and sub-Saharan African influence that is present among other Egyptians. [66]

According to a paper published in 2017, most of the genetic studies on North African populations agree with a limited correlation between genetics and geography, showing a high population heterogeneity in the region (without strong differences between Arabs and Berbers). Northern African populations have been described as a mosaic of North African (Taforalt), Middle Eastern, European (Early European Farmers) and sub-Saharan ancestries. [67] [68]

Ancient North African samples such as the Paleolithic Taforalt, were found to be composed of two major components: a Holocene Levantine component, and from an indigenous Hadza/West African-like component. The Taforalt individuals show closest genetic affinity for ancient Epipaleolithic Natufian individuals, with slightly greater affinity for the Natufians than later Neolithic Levantines. A two-way admixture scenario using Levantine samples and modern West/East African samples as reference populations inferred that the Taforalt individuals bore 63.5% West-Eurasian Levantine-related and 36.5% sub-Saharan African-related ancestries, with no evidence for additional gene flow from the Epigravettian culture of Upper Paleolithic Europe. The Taforalt individuals also show evidence of limited Neanderthal ancestry. [69] [70] [71] [72] A recent genetic study published in the "European Journal of Human Genetics" in Nature (2019) showed that Northern Africans are closely related to West Asians as well as Europeans. Northern Africans can be distinguished from West Africans and other African populations dwelling south of the Sahara. [73]

According to Lucas-Sánchez, Marcel et al. (2021) despite the geneflow from the Middle-East, Europe and sub-Saharan Africa, an autochthonous genetic component that dates back to pre-Holocene times is still present in North African groups. The analysis also showed as a whole no genetic pattern of differentiation between Tamazight (i.e. Berber) and Arabs. [74]

Ancient DNA

Unlike sub-Saharan Africans, North Africans have a similar level of Neanderthal DNA to South Europeans and West Asians, which is pre-Neolithic in origin, rather than via any later admixture with peoples from outside of North Africa during the historical period. It was found that modern North Africans derive mainly from a "back to Africa" population from Eurasia "from before 12,000 years ago (ya) (i.e., prior to the Neolithic migrations)" but more recent than 40,000 years ago which seems to "represent a genetic discontinuity with the earliest modern human settlers of North Africa (those with the Aterian industry). [75]

In 2013, Nature announced the publication of the first genetic study utilizing next-generation sequencing to ascertain the ancestral lineage of an Ancient Egyptian individual. The research was led by Carsten Pusch of the University of Tübingen in Germany and Rabab Khairat, who released their findings in the Journal of Applied Genetics. DNA was extracted from the heads of five Egyptian mummies that were housed at the institution. All the specimens were dated to between 806 BC and 124 AD, a timeframe corresponding with the Late Dynastic and Ptolemaic periods. The researchers observed that one of the mummified individuals likely belonged to the mtDNA haplogroup I2, a maternal clade that is believed to have originated in Western Asia. [76]

In 2013, Iberomaurusian skeletons from the prehistoric sites of Taforalt and Afalou in the Maghreb were analyzed for ancient DNA. All of the specimens belonged to maternal clades associated with either North Africa or the northern and southern Mediterranean littoral, indicating gene flow between these areas since the Epipaleolithic. [77] The ancient Taforalt individuals carried the mtDNA haplogroups U6, H, JT and V, which points to population continuity in the region dating from the Iberomaurusian period. [78]

The E1b1b-M81 (~44%), R-M269 (~44%), and E-M132/E1a (~6%) paternal haplogroups have been found in ancient Guanche (Bimbapes) fossils excavated in Punta Azul, El Hierro, Canary Islands, which are dated to the 10th century. Maternally, the specimens all belong to the H1 clade. These locally born individuals carried the H1-16260 haplotype, which is exclusive to the Canary Islands and Algeria. [79] In 2018, DNA analysis of Later Stone Age individuals from the site of Taforalt (Iberomaurusian, 15 000 BP) revealed that the Iberomaurusians carried haplogroup E-M78* and Cardial culture bearers from the site of Ifri N' Ammar (7 000 BP) carried the Levantine marker E-L19 indicating a break in continuity in the region. These studies confirmed a break in continuity in the region showing that Mesolithic Moroccans did not contribute paternally to Later Stone Age individuals and to present-day Maghrebi populations. [3] [80]

A 2019 study seeking to determine if North Africans descend from strictly Palaeolithic groups (Taforalt), or subsequent migrations, discovered that most of the genetic variation in the region was shaped during the Neolithic. While the ancient samples had more of the Taforalt component, it is most frequent today in Western North Africans (Saharawi, Moroccans, Algerians) and Berbers, and suggested a continuity of this autochronous North African component. The consideration of Berber-speaking groups as the autochthonous peoples of North Africa was reinforced by these results. [81]

See also

Related Research Articles

<span class="mw-page-title-main">Maghreb</span> Major region of Northern Africa; western half of Arab world

The Maghreb, also known as the Arab Maghreb and Northwest Africa, is the western part of the Arab world. The region comprises western and central North Africa, including Algeria, Libya, Mauritania, Morocco, and Tunisia. The Maghreb also includes the disputed territory of Western Sahara. As of 2018, the region had a population of over 100 million people.

<span class="mw-page-title-main">Haplogroup J (Y-DNA)</span> Human Y-chromosome DNA haplogroup

Haplogroup J-M304, also known as J, is a human Y-chromosome DNA haplogroup. It is believed to have evolved in Western Asia. The clade spread from there during the Neolithic, primarily into North Africa, the Horn of Africa, the Socotra Archipelago, the Caucasus, Europe, Anatolia, Central Asia, South Asia, and Southeast Asia.

<span class="mw-page-title-main">Haplogroup E-M215</span> Human Y-chromosome DNA haplogroup

E-M215, also known as E1b1b-M215, is a major human Y-chromosome DNA haplogroup. E-M215 has two basal branches, E-M35 and E-M281. E-M35 is primarily distributed in North Africa and the Horn of Africa, and occurs at moderate frequencies in the Middle East, Europe, and Southern Africa. E-M281 occurs at a low frequency in Ethiopia.

Haplogroup V is a human mitochondrial DNA (mtDNA) haplogroup. The clade is believed to have originated over 14,000 years ago in Southern Europe.

Haplogroup U is a human mitochondrial DNA haplogroup (mtDNA). The clade arose from haplogroup R, likely during the early Upper Paleolithic. Its various subclades are found widely distributed across Northern and Eastern Europe, Central, Western and South Asia, as well as North Africa, the Horn of Africa, and the Canary Islands.

Haplogroup E-M96 is a human Y-chromosome DNA haplogroup. It is one of the two main branches of the older and ancestral haplogroup DE, the other main branch being haplogroup D. The E-M96 clade is divided into two main subclades: the more common E-P147, and the less common E-M75.

<span class="mw-page-title-main">Haplogroup J-M267</span> Human Y-chromosome DNA haplogroup

Haplogroup J-M267, also commonly known as Haplogroup J1, is a subclade (branch) of Y-DNA haplogroup J-P209 along with its sibling clade haplogroup J-M172.

Canary Islanders, or Canarians, are the people of the Canary Islands, an autonomous community of Spain near the coast of northwest Africa. The distinctive variety of the Spanish language spoken in the region is known as habla canaria or the (dialecto) canario. The Canarians, and their descendants, played a major role during the conquest, colonization, and eventual independence movements of various countries in Latin America. Their ethnic and cultural presence is most palpable in the countries of Uruguay, Venezuela, Cuba and the Dominican Republic as well as the U.S. territory of Puerto Rico.

<span class="mw-page-title-main">Genetic history of the Middle East</span>

The genetic history of the Middle East is the subject of research within the fields of human population genomics, archaeogenetics and Middle Eastern studies. Researchers use Y-DNA, mtDNA, and other autosomal DNAs to identify the genetic history of ancient and modern populations of Egypt, Persia, Mesopotamia, Anatolia, Arabia, the Levant, and other areas.

E-M35, also known as E1b1b1-M35, is a human Y-chromosome DNA haplogroup. E-M35 has two basal branches, E-V68 and E-Z827. E-V68 and E-Z827 are primarily distributed in North Africa and the Horn of Africa, and occur at lower frequencies in the Middle East, Europe, and Southern Africa.

Haplogroup E-V68, also known as E1b1b1a, is a major human Y-chromosome DNA haplogroup found in North Africa, the Horn of Africa, Western Asia and Europe. It is a subclade of the larger and older haplogroup, known as E1b1b or E-M215. The E1b1b1a lineage is identified by the presence of a single nucleotide polymorphism (SNP) mutation on the Y chromosome, which is known as V68. It is a subject of discussion and study in genetics as well as genetic genealogy, archaeology, and historical linguistics.

African admixture in Europe refers to the presence of human genotypes attributable to periods of human population dispersals out of Africa in the genetic history of Europe. For example, certain Y-DNA and mtDNA lineages are thought to have spread from Northeastern Africa to the Near East during the later Pleistocene, and from there to Europe with the Neolithic Revolution.

<span class="mw-page-title-main">Mechta-Afalou</span> Prehistoric North African population

Mechta-Afalou, also known as Mechtoid or Paleo-Berber, are a population that inhabited parts of North Africa during the late Paleolithic and Mesolithic. They are associated with the Iberomaurusian archaeological culture.

<span class="mw-page-title-main">Iberomaurusian</span> Archaeological culture in North Africa

The Iberomaurusian is a backed bladelet lithic industry found near the coasts of Morocco, Algeria, and Tunisia. It is also known from a single major site in Libya, the Haua Fteah, where the industry is locally known as the Eastern Oranian. The Iberomaurusian seems to have appeared around the time of the Last Glacial Maximum (LGM), somewhere between c. 25,000 and 23,000 cal BP. It would have lasted until the early Holocene c. 11,000 cal BP.

<span class="mw-page-title-main">Genetic history of the Iberian Peninsula</span> Ancestry of Spanish and Portuguese people

The ancestry of modern Iberians is consistent with the geographical situation of the Iberian Peninsula in the South-west corner of Europe, showing characteristics that are largely typical in Southern and Western Europeans. As is the case for most of the rest of Southern Europe, the principal ancestral origin of modern Iberians are Early European Farmers who arrived during the Neolithic. The large predominance of Y-Chromosome Haplogroup R1b, common throughout Western Europe, is also testimony to a sizeable input from various waves of Western Steppe Herders that originated in the Pontic-Caspian Steppe during the Bronze Age.

E-Z827, also known as E1b1b1b, is a major human Y-chromosome DNA haplogroup. It is the parent lineage to the E-Z830 and E-V257 subclades, and defines their common phylogeny. The former is predominantly found in the Middle East; the latter is most frequently observed in North Africa, with its E-M81 subclade observed among the ancient Guanche natives of the Canary Islands. E-Z827 is also found at lower frequencies in Europe, and in isolated parts of Southeast Africa.

Listed here are the human Y-chromosome DNA haplogroups found in various ethnic groups and populations from North Africa and the Sahel (Tuaregs).

<span class="mw-page-title-main">Genetic studies on Moroccans</span>

Moroccan genetics encompasses the genetic history of the people of Morocco, and the genetic influence of this ancestry on world populations. It has been heavily influenced by geography.

The genetic history of Egypt reflects its geographical location at the crossroads of several major biocultural areas: North Africa, the Sahara, the Middle East, the Mediterranean and sub-Saharan Africa.

<span class="mw-page-title-main">Genetic history of Africa</span>

The genetic history of Africa summarizes the genetic makeup and population history of African populations in Africa, composed of the overall genetic history, including the regional genetic histories of North Africa, West Africa, East Africa, Central Africa, and Southern Africa, as well as the recent origin of modern humans in Africa. The Sahara served as a trans-regional passageway and place of dwelling for people in Africa during various humid phases and periods throughout the history of Africa.

References

  1. 1 2 Arauna, Lara R.; Mendoza-Revilla, Javier; Mas-Sandoval, Alex; Izaabel, Hassan; Bekada, Asmahan; Benhamamouch, Soraya; Fadhlaoui-Zid, Karima; Zalloua, Pierre; Hellenthal, Garrett; Comas, David (February 2017). "Recent Historical Migrations Have Shaped the Gene Pool of Arabs and Berbers in North Africa". Molecular Biology and Evolution. 34 (2): 318–329. doi:10.1093/molbev/msw218. PMC   5644363 . PMID   27744413.
  2. Arauna, L. R.; Hellenthal, G.; Comas, D. (May 2019). "Dissecting human North African gene-flow into its western coastal surroundings". Proceedings of the Royal Society B: Biological Sciences. 286 (1902). doi:10.1098/rspb.2019.0471. PMC   6532504 . PMID   31039721.
  3. 1 2 3 van de Loosdrecht, Marieke; Bouzouggar, Abdeljalil; Humphrey, Louise; Posth, Cosimo; Barton, Nick; Aximu-Petri, Ayinuer; Nickel, Birgit; Nagel, Sarah; Talbi, El Hassan; El Hajraoui, Mohammed Abdeljalil; Amzazi, Saaïd; Hublin, Jean-Jacques; Pääbo, Svante; Schiffels, Stephan; Meyer, Matthias; Haak, Wolfgang; Jeong, Choongwon; Krause, Johannes (4 May 2018). "Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations". Science. 360 (6388): 548–552. Bibcode:2018Sci...360..548V. doi: 10.1126/science.aar8380 . PMID   29545507.
  4. Lieberman, Leonard; Jackson, Fatimah Linda C. (1995). "Race and Three Models of Human Origin". American Anthropologist . 97 (2): 231–242. doi:10.1525/aa.1995.97.2.02a00030. ISSN   0002-7294. JSTOR   681958.
  5. "It is not clear to what degree certain genetic systems usually interpreted as non-African may in fact be native to Africa. Much depends on how "African" is defined and the model of interpretation. The various genetic studies usually suffer from what is called categorical thinking, specifically, racial thinking. Many investigators still think of "African" in a stereotyped, nonscientific (evolutionary) fashion, not acknowledging a range of genetic variants or traits as equally African".Celenko, Theodore (1996). "The Geographical Origins and Population Relationships of Early Ancient Egyptians" In Egypt in Africa. Indianapolis, Ind.: Indianapolis Museum of Art. pp. 20–33. ISBN   0936260645.
  6. Ryan A.Brown and George J. Armelagos (2001). "Apportionment of racial diversity: A review". Evolutionary Anthropology . 10, Issue 1 (34–40): 34–40. doi: 10.1002/1520-6505(2001)10:1<34::AID-EVAN1011>3.0.CO;2-P . S2CID   22845356.
  7. Eltis, David; Bradley, Keith R.; Perry, Craig; Engerman, Stanley L.; Cartledge, Paul; Richardson, David (12 August 2021). The Cambridge World History of Slavery: Volume 2, AD 500-AD 1420. Cambridge University Press. p. 150. ISBN   978-0-521-84067-5 via Google Books.
  8. Candelora 2022, pp. 101–122.
  9. Keita, S. O. Y.; Kittles, Rick A. (1997). "The Persistence of Racial Thinking and the Myth of Racial Divergence". American Anthropologist . 99 (3): 534–544. doi:10.1525/aa.1997.99.3.534. ISSN   0002-7294. JSTOR   681741.
  10. Ehret, Christopher (20 June 2023). Ancient Africa: A Global History, to 300 CE. Princeton: Princeton University Press. pp. 83–86, 167–169. ISBN   978-0-691-24409-9.
  11. Callaway, Ewen (7 June 2017). "Oldest Homo sapiens fossil claim rewrites our species' history". Nature. doi:10.1038/nature.2017.22114.
  12. Hublin, Jean-Jacques; McPherron, Shannon (31 March 2012). Modern Origins: A North African Perspective. Springer Science & Business Media. p. 180. ISBN   9789400729285.
  13. Woolmer, Mark (30 April 2017). A Short History of the Phoenicians. Bloomsbury Publishing. p. 201. ISBN   978-1-78672-217-1.
  14. 1 2 Penninx, Wim. "The male lines of the Maghreb: Phoenicians, Carthage, Muslim conquest and Berbers".{{cite journal}}: Cite journal requires |journal= (help)
  15. Rando, J. C.; Pinto, F.; Gonzalez, A. M.; Hernandez, M.; Larruga, J. M.; Cabrera, V. M.; Bandelt, H.-J. (November 1998). "Mitochondrial DNA analysis of Northwest African populations reveals genetic exchanges with European, Near-Eastern, and sub-Saharan populations". Annals of Human Genetics. 62 (6): 531–550. doi: 10.1046/j.1469-1809.1998.6260531.x . PMID   10363131. S2CID   2925153.
  16. Arauna, Lara R.; Mendoza-Revilla, Javier; Mas-Sandoval, Alex; Izaabel, Hassan; Bekada, Asmahan; Benhamamouch, Soraya; Fadhlaoui-Zid, Karima; Zalloua, Pierre; Hellenthal, Garrett; Comas, David (February 2017). "Recent Historical Migrations Have Shaped the Gene Pool of Arabs and Berbers in North Africa". Molecular Biology and Evolution. 34 (2): 318–329. doi:10.1093/molbev/msw218. PMC   5644363 . PMID   27744413.
  17. 1 2 3 4 5 Nebel, Almut; Landau-Tasseron, Ella; Filon, Dvora; Oppenheim, Ariella; Faerman, Marina (June 2002). "Genetic Evidence for the Expansion of Arabian Tribes into the Southern Levant and North Africa". The American Journal of Human Genetics. 70 (6): 1594–1596. doi:10.1086/340669. PMC   379148 . PMID   11992266.
  18. 1 2 3 4 5 6 van de Loosdrecht; et al. (15 March 2018). "Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations". Science. 360 (6388): 548–552. Bibcode:2018Sci...360..548V. doi: 10.1126/science.aar8380 . ISSN   0036-8075. PMID   29545507.
  19. 1 2 3 4 Simões, Luciana G.; Günther, Torsten; Martínez-Sánchez, Rafael M.; Vera-Rodríguez, Juan Carlos; Iriarte, Eneko; Rodríguez-Varela, Ricardo; Bokbot, Youssef; Valdiosera, Cristina; Jakobsson, Mattias (June 2023). "Northwest African Neolithic initiated by migrants from Iberia and Levant". Nature. 618 (7965): 550–556. Bibcode:2023Natur.618..550S. doi: 10.1038/s41586-023-06166-6 . ISSN   1476-4687. PMC   10266975 . PMID   37286608.
  20. 1 2 3 4 Fregel, Rosa; Méndez, Fernando L.; Bokbot, Youssef; Martín-Socas, Dimas; Camalich-Massieu, María D.; Santana, Jonathan; Morales, Jacob; Ávila-Arcos, María C.; Underhill, Peter A.; Shapiro, Beth; Wojcik, Genevieve; Rasmussen, Morten; Soares, André E. R.; Kapp, Joshua; Sockell, Alexandra (26 June 2018). "Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe". Proceedings of the National Academy of Sciences of the United States of America. 115 (26): 6774–6779. Bibcode:2018PNAS..115.6774F. doi: 10.1073/pnas.1800851115 . ISSN   0027-8424. PMC   6042094 . PMID   29895688.
  21. Drosou, Konstantina; Price, Campbell; Brown, Terence A. (1 February 2018). "The kinship of two 12th Dynasty mummies revealed by ancient DNA sequencing". Journal of Archaeological Science: Reports. 17: 793–797. Bibcode:2018JArSR..17..793D. doi:10.1016/j.jasrep.2017.12.025. ISSN   2352-409X.
  22. 1 2 3 4 5 6 7 bia.unibz.it https://bia.unibz.it/esploro/outputs/bookChapter/Maternal-and-Paternal-Lineages-in-King/991005930750801241 . Retrieved 1 December 2023.{{cite web}}: Missing or empty |title= (help)
  23. 1 2 3 Schuenemann, Verena J.; Peltzer, Alexander; Welte, Beatrix; van Pelt, W. Paul; Molak, Martyna; Wang, Chuan-Chao; Furtwängler, Anja; Urban, Christian; Reiter, Ella; Nieselt, Kay; Teßmann, Barbara (30 May 2017). "Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods". Nature Communications. 8 (1): 15694. Bibcode:2017NatCo...815694S. doi: 10.1038/ncomms15694 . ISSN   2041-1723. PMC   5459999 . PMID   28556824.
  24. 1 2 3 4 Moots, Hannah M.; Antonio, Margaret; Sawyer, Susanna; Spence, Jeffrey P.; Oberreiter, Victoria; Weiß, Clemens L.; Lucci, Michaela; Cherifi, Yahia Mehdi Seddik; La Pastina, Francesco; Genchi, Francesco; Praxmeier, Elisa; Zagorc, Brina; Cheronet, Olivia; Özdoğan, Kadir T.; Demetz, Lea (September 2023). "A genetic history of continuity and mobility in the Iron Age central Mediterranean". Nature Ecology & Evolution. 7 (9): 1515–1524. Bibcode:2023NatEE...7.1515M. doi:10.1038/s41559-023-02143-4. ISSN   2397-334X. PMID   37592021. S2CID   247549249.
  25. Antonio, Margaret; Weiß, Clemens; Gao, Ziyue; Sawyer, Susanna; Oberreiter, Victoria; Moots, Hannah; Spence, Jeffrey; Cheronet, Olivia; Zagorc, Brina (2023). Stable population structure in Europe since the Iron Age, despite high mobilit (Report). doi:10.1101/2022.05.15.491973.
  26. Arredi, Barbara; Poloni, Estella S.; Paracchini, Silvia; Zerjal, Tatiana; Fathallah, Dahmani M.; Makrelouf, Mohamed; Pascali, Vincenzo L.; Novelletto, Andrea; Tyler-Smith, Chris (August 2004). "A predominantly neolithic origin for Y-chromosomal DNA variation in North Africa". American Journal of Human Genetics. 75 (2): 338–345. doi:10.1086/423147. ISSN   0002-9297. PMC   1216069 . PMID   15202071.
  27. Sahakyan, Hovhannes; Margaryan, Ashot; Saag, Lauri; Karmin, Monika; Flores, Rodrigo; Haber, Marc; Kushniarevich, Alena; Khachatryan, Zaruhi; Bahmanimehr, Ardeshir; Parik, Jüri; Karafet, Tatiana; Yunusbayev, Bayazit; Reisberg, Tuuli; Solnik, Anu; Metspalu, Ene (23 March 2021). "Origin and diffusion of human Y chromosome haplogroup J1-M267". Scientific Reports. 11 (1): 6659. Bibcode:2021NatSR..11.6659S. doi: 10.1038/s41598-021-85883-2 . ISSN   2045-2322. PMC   7987999 . PMID   33758277.
  28. 1 2 3 4 Cruciani, Fulvio; La Fratta, Roberta; Santolamazza, Piero; Sellitto, Daniele; Pascone, Roberto; Moral, Pedro; Watson, Elizabeth; Guida, Valentina; Colomb, Eliane Beraud; Zaharova, Boriana; Lavinha, João; Vona, Giuseppe; Aman, Rashid; Calì, Francesco; Akar, Nejat; Richards, Martin; Torroni, Antonio; Novelletto, Andrea; Scozzari, Rosaria (May 2004). "Phylogeographic Analysis of Haplogroup E3b (E-M215) Y Chromosomes Reveals Multiple Migratory Events Within and Out Of Africa". The American Journal of Human Genetics. 74 (5): 1014–1022. doi:10.1086/386294. PMC   1181964 . PMID   15042509.
  29. 1 2 3 4 5 Semino, Ornella; Magri, Chiara; Benuzzi, Giorgia; Lin, Alice A.; Al-Zahery, Nadia; Battaglia, Vincenza; Maccioni, Liliana; Triantaphyllidis, Costas; Shen, Peidong; Oefner, Peter J.; Zhivotovsky, Lev A.; King, Roy; Torroni, Antonio; Cavalli-Sforza, L. Luca; Underhill, Peter A.; Santachiara-Benerecetti, A. Silvana (May 2004). "Origin, Diffusion, and Differentiation of Y-Chromosome Haplogroups E and J: Inferences on the Neolithization of Europe and Later Migratory Events in the Mediterranean Area". The American Journal of Human Genetics. 74 (5): 1023–1034. doi:10.1086/386295. PMC   1181965 . PMID   15069642.
  30. Kujanová, Martina; Pereira, Luísa; Fernandes, Verónica; Pereira, Joana B.; Černý, Viktor (October 2009). "Near Eastern Neolithic genetic input in a small oasis of the Egyptian Western Desert". American Journal of Physical Anthropology. 140 (2): 336–346. doi:10.1002/ajpa.21078. PMID   19425100.
  31. Fadhlaoui-Zid, Karima; Martinez-Cruz, Begoña; Khodjet-el-khil, Houssein; Mendizabal, Isabel; Benammar-Elgaaied, Amel; Comas, David (October 2011). "Genetic structure of Tunisian ethnic groups revealed by paternal lineages". American Journal of Physical Anthropology. 146 (2): 271–280. doi:10.1002/ajpa.21581. PMID   21915847.
  32. Myles, Sean; Bouzekri, Nourdine; Haverfield, Eden; Cherkaoui, Mohamed; Dugoujon, Jean-Michel; Ward, Ryk (1 June 2005). "Genetic evidence in support of a shared Eurasian-North African dairying origin". Human Genetics. 117 (1): 34–42. doi:10.1007/s00439-005-1266-3. PMID   15806398. S2CID   23939065.
  33. Keita, S.O.Y. (ed Bengston, John) (3 December 2008). "Geography, selected Afro-Asiatic families, and Y Chromosome lineage variation: An exploration in linguistics and phylogeography" in In Hot Pursuit of Language in Prehistory: Essays in the four fields of anthropology. In honor of Harold Crane Fleming. John Benjamins Publishing. pp. 3–15. ISBN   978-90-272-8985-8.{{cite book}}: CS1 maint: multiple names: authors list (link)
  34. Arredi, Barbara; Poloni, Estella S.; Paracchini, Silvia; Zerjal, Tatiana; Fathallah, Dahmani M.; Makrelouf, Mohamed; Pascali, Vincenzo L.; Novelletto, Andrea; Tyler-Smith, Chris (August 2004). "A Predominantly Neolithic Origin for Y-Chromosomal DNA Variation in North Africa". American Journal of Human Genetics. 75 (2): 338–345. doi:10.1086/423147. ISSN   0002-9297. PMC   1216069 . PMID   15202071.
  35. Arredi, Barbara; Poloni, Estella S.; Paracchini, Silvia; Zerjal, Tatiana; Fathallah, Dahmani M.; Makrelouf, Mohamed; Pascali, Vincenzo L.; Novelletto, Andrea; Tyler-Smith, Chris (August 2004). "A Predominantly Neolithic Origin for Y-Chromosomal DNA Variation in North Africa". The American Journal of Human Genetics. 75 (2): 338–345. doi:10.1086/423147. PMC   1216069 . PMID   15202071.
  36. 1 2 Flores, Carlos; Maca-Meyer, Nicole; González, Ana M.; Oefner, Peter J.; Shen, Peidong; Pérez, Jose A.; Rojas, Antonio; Larruga, Jose M.; Underhill, Peter A. (October 2004). "Reduced genetic structure of the Iberian peninsula revealed by Y-chromosome analysis: implications for population demography". European Journal of Human Genetics. 12 (10): 855–863. doi: 10.1038/sj.ejhg.5201225 . PMID   15280900. S2CID   16765118.
  37. See the remarks of genetic genealogist Robert Tarín for example. We can add 6.1 per cent (8 out of 132) in Cuba, Mendizabal et al. (2008); 5.4 per cent (6 out of 112) in Brazil (Rio de Janeiro), "The presence of chromosomes of North African origin (E3b1b-M81; Cruciani et al., 2004) can also be explained by a Portuguese-mediated influx, since this haplogroup reaches a frequency of 5.6 per cent in Portugal (Beleza et al., 2006), quite similar to the frequency found in Rio de Janeiro (5.4 per cent) among European contributors.", Silva et al. (2006) [ verification needed ]
  38. 2.4 per cent (7 out of 295) among Hispanic men from California and Hawaii, Paracchini et al. (2003) [ verification needed ]
  39. Y-DNA Haplogroup E and its Subclades - 2008
  40. Gonçalves, Rita; Freitas, Ana; Branco, Marta; Rosa, Alexandra; Fernandes, Ana T.; Zhivotovsky, Lev A.; Underhill, Peter A.; Kivisild, Toomas; Brehm, António (July 2005). "Y-chromosome Lineages from Portugal, Madeira and Açores Record Elements of Sephardim and Berber Ancestry: Y-chromosome Lineages in Portugal and the Atlantic Islands". Annals of Human Genetics. 69 (4): 443–454. doi:10.1111/j.1529-8817.2005.00161.x. hdl: 10400.13/3018 . PMID   15996172. S2CID   3229760.
  41. Cruciani, F.; La Fratta, R.; Trombetta, B.; Santolamazza, P.; Sellitto, D.; Colomb, E. B.; Dugoujon, J. -M.; Crivellaro, F.; Benincasa, T. (2007). "Tracing Past Human Male Movements in Northern/Eastern Africa and Western Eurasia: New Clues from Y-Chromosomal Haplogroups E-M78 and J-M12". Molecular Biology and Evolution. 24 (6): 1300–1311. doi: 10.1093/molbev/msm049 . PMID   17351267.
  42. Lacan, Marie; Keyser, Christine; Ricaut, François-Xavier; Brucato, Nicolas; Tarrús, Josep; Bosch, Angel; Guilaine, Jean; Crubézy, Eric; Ludes, Bertrand (8 November 2011). "Ancient DNA suggests the leading role played by men in the Neolithic dissemination". Proceedings of the National Academy of Sciences. 108 (45): 18255–18259. Bibcode:2011PNAS..10818255L. doi: 10.1073/pnas.1113061108 . PMC   3215063 . PMID   22042855.
  43. Szecsenyi-Nagy, Anna (2015). Molecular genetic investigation of the Neolithic population history in the western Carpathian Basin (Thesis). Johannes Gutenberg-Universität Mainz. doi:10.25358/openscience-1856.
  44. 1 2 Bosch, Elena; Calafell, Francesc; Comas, David; Oefner, Peter J.; Underhill, Peter A.; Bertranpetit, Jaume (April 2001). "High-Resolution Analysis of Human Y-Chromosome Variation Shows a Sharp Discontinuity and Limited Gene Flow between Northwestern Africa and the Iberian Peninsula". American Journal of Human Genetics. 68 (4): 1019–1029. doi:10.1086/319521. PMC   1275654 . PMID   11254456.
  45. Di Gaetano, Cornelia; Cerutti, Nicoletta; Crobu, Francesca; Robino, Carlo; Inturri, Serena; Gino, Sarah; Guarrera, Simonetta; Underhill, Peter A; King, Roy J; Romano, Valentino; Cali, Francesco; Gasparini, Mauro; Matullo, Giuseppe; Salerno, Alfredo; Torre, Carlo; Piazza, Alberto (January 2009). "Differential Greek, Phoenician and northern African migrations to Sicily are supported by genetic evidence from the Y chromosome". European Journal of Human Genetics. 17 (1): 91–99. doi:10.1038/ejhg.2008.120. PMC   2985948 . PMID   18685561. "The co-occurrence of the Berber E3b1b-M81 (2.12 percent) and of the Mid-Eastern J1-M267 (3.81 percent) Hgs together with the presence of E3b1a1-V12, E3b1a3-V22, E3b1a4-V65 (5.5 percent) support the hypothesis of intrusion of North African genes. (...) These Hgs are common in Northern Africa and are observed only in Mediterranean Europe and together the presence of the E3b1b-M81 highlights the genetic relationships between northern Africa and Sicily. (...) Hg E3b1b-M81 network cluster confirms the genetic affinity between Sicily and North Africa."
  46. Adams, Susan M.; Bosch, Elena; Balaresque, Patricia L.; Ballereau, Stéphane J.; Lee, Andrew C.; Arroyo, Eduardo; López-Parra, Ana M.; Aler, Mercedes; Grifo, Marina S. Gisbert; Brion, Maria; Carracedo, Angel; Lavinha, João; Martínez-Jarreta, Begoña; Quintana-Murci, Lluis; Picornell, Antònia; Ramon, Misericordia; Skorecki, Karl; Behar, Doron M.; Calafell, Francesc; Jobling, Mark A. (December 2008). "The Genetic Legacy of Religious Diversity and Intolerance: Paternal Lineages of Christians, Jews, and Muslims in the Iberian Peninsula". The American Journal of Human Genetics. 83 (6): 725–736. doi:10.1016/j.ajhg.2008.11.007. PMC   2668061 . PMID   19061982.
  47. Fadhlaoui-Zid, K.; Haber, M.; Martínez-Cruz, B.; Zalloua, P.; Benammar Elgaaied, A.; Comas, D. (November 2013). "Genome-Wide and Paternal Diversity Reveal a Recent Origin of Human Populations in North Africa". PLOS ONE. 8 (11): e80293. Bibcode:2013PLoSO...880293F. doi: 10.1371/journal.pone.0080293 . PMC   3842387 . PMID   24312208.
  48. Elkamel, Sarra; Marques, Sofia L.; Alvarez, Luis; Gomes, Veronica; Boussetta, Sami; Mourali-Chebil, Soufia; Khodjet-El-Khil, Houssein; Cherni, Lotfi; Benammar-Elgaaied, Amel; Prata, Maria J. (August 2021). "Insights into the Middle Eastern paternal genetic pool in Tunisia: high prevalence of T-M70 haplogroup in an Arab population". Scientific Reports. 11 (1): 15728. Bibcode:2021NatSR..1115728E. doi:10.1038/s41598-021-95144-x. PMC   8333252 . PMID   34344940.
  49. Semino, Ornella; Magri, Chiara; Benuzzi, Giorgia; Lin, Alice A.; Al-Zahery, Nadia; Battaglia, Vincenza; MacCioni, Liliana; Triantaphyllidis, Costas; Shen, Peidong; Oefner, Peter J.; Zhivotovsky, Lev A.; King, Roy; Torroni, Antonio; Cavalli-Sforza, L. Luca; Underhill, Peter A.; Santachiara-Benerecetti, A. Silvana (May 2004). "Origin, Diffusion, and Differentiation of Y-Chromosome Haplogroups E and J: Inferences on the Neolithization of Europe and Later Migratory Events in the Mediterranean Area". The American Journal of Human Genetics. 74 (5): 1023–1034. doi:10.1086/386295. PMC   1181965 . PMID   15069642.
  50. 1 2 Macaulay, Vincent; Richards, Martin; Hickey, Eileen; Vega, Emilce; Cruciani, Fulvio; Guida, Valentina; Scozzari, Rosaria; Bonné-Tamir, Batsheva; Sykes, Bryan; Torroni, Antonio (January 1999). "The Emerging Tree of West Eurasian mtDNAs: A Synthesis of Control-Region Sequences and RFLPs". The American Journal of Human Genetics. 64 (1): 232–249. doi:10.1086/302204. PMC   1377722 . PMID   9915963.
  51. Fadhlaoui-Zid, K.; Plaza, S.; Calafell, F.; Ben Amor, M.; Comas, D.; Bennamar, A.; Gaaied, E. (2004). "Mitochondrial DNA Heterogeneity in Tunisian Berbers". Annals of Human Genetics. 68 (3): 222–33. doi:10.1046/j.1529-8817.2004.00096.x. PMID   15180702. S2CID   6407058.
  52. Esteban, E.; González-Pérez, E.; Harich, N.; López-Alomar, A.; Via, M.; Luna, F.; Moral, P. (2004). "Genetic relationships among Berbers and South Spaniards based on CD4 microsatellite/Alu haplotypes". Annals of Human Biology. 31 (2): 202–212. doi:10.1080/03014460310001652275. PMID   15204363. S2CID   24805101.
  53. Loueslati, B. Y.; Cherni, L.; Khodjet-Elkhil, H.; Ennafaa, H.; Pereira, L. S.; Amorim, A. N.; Ben Ayed, F.; Ben Ammar Elgaaied, A. (2006). "Islands Inside an Island: Reproductive Isolates on Jerba Island". American Journal of Human Biology. 18 (1): 149–153. doi:10.1002/ajhb.20473. PMID   16378336. S2CID   21490275.
  54. Cherni, L.; Loueslati, B. Y.; Pereira, L.; Ennafaa, H.; Amorim, A.; Gaaied, A. B. A. E. (2005). "Female Gene Pools of Berber and Arab Neighboring Communities in Central Tunisia: Microstructure of mtDNA Variation in North Africa". Human Biology. 77 (1): 61–70. doi:10.1353/hub.2005.0028. hdl: 10216/109267 . PMID   16114817. S2CID   7022459.
  55. 1 2 Achilli, Alessandro; Rengo, Chiara; Battaglia, Vincenza; Pala, Maria; Olivieri, Anna; Fornarino, Simona; Magri, Chiara; Scozzari, Rosaria; Babudri, Nora; Santachiara-Benerecetti, A. Silvana; Bandelt, Hans-Jürgen; Semino, Ornella; Torroni, Antonio (May 2005). "Saami and Berbers—An Unexpected Mitochondrial DNA Link". The American Journal of Human Genetics. 76 (5): 883–886. doi:10.1086/430073. PMC   1199377 . PMID   15791543.
  56. Data from Achilli et al. 2005; Brakez et al. 2001; Cherni et al. 2005; Fadhlaoui-Zid et al. 2004; Krings et al.1999; Loueslati et al. 2006; Macaulay et al. 1999; Olivieri et al. 2006; Plaza et al. 2003; Rando et al. 1998; Stevanovitchet al. 2004; Coudray et al.2008; Cherni et al. 2008[ improper synthesis? ][ verification needed ]
  57. Harich, Nourdin; Costa, Marta D; Fernandes, Verónica; Kandil, Mostafa; Pereira, Joana B; Silva, Nuno M; Pereira, Luísa (December 2010). "The trans-Saharan slave trade - clues from interpolation analyses and high-resolution characterization of mitochondrial DNA lineages". BMC Evolutionary Biology. 10 (1): 138. Bibcode:2010BMCEE..10..138H. doi: 10.1186/1471-2148-10-138 . PMC   2875235 . PMID   20459715.
  58. Frigi, Sabeh; Cherni, Lotfi; Fadhlaoui-zid, Karima; Benammar-Elgaaied, Amel (2010). "Ancient Local Evolution of African mtDNA Haplogroups in Tunisian Berber Populations". Human Biology. 82 (4): 367–384. doi:10.3378/027.082.0402. PMID   21082907. S2CID   27594333. Project MUSE   394730.
  59. Plaza, S.; Calafell, F.; Helal, A.; Bouzerna, N.; Lefranc, G.; Bertranpetit, J.; Comas, D. (2003). "Joining the Pillars of Hercules: MtDNA Sequences Show Multidirectional Gene Flow in the Western Mediterranean". Annals of Human Genetics. 67 (4): 312–28. doi:10.1046/j.1469-1809.2003.00039.x. PMID   12914566. S2CID   11201992. But very likely, most of the L mtDNA that has been found in minor amounts in Iberia, is actually pre-neolithic in origin, as it was demonstrated by María Cerezo et al., (Reconstructing ancient mitochondrial DNA links between Africa and Europe). "Haplogroup U6 is present at frequencies ranging from 0-7 percent in the various Iberian populations, with an average of 1.8 percent. Given that the frequency of U6 in NW Africa is 10 percent, the mtDNA contribution of NW Africa to Iberia can be estimated at 18 percent (though U6 has been found in many Iberian hunter-gatherer remains as well). This is larger than the contribution estimated with Y-chromosomal lineages (7 percent) (Bosch et al. 2001).
  60. Pereira, Luisa; Cunha, Carla; Alves, Cintia; Amorim, Antonio (2005). "African Female Heritage in Iberia: A Reassessment of mtDNA Lineage Distribution in Present Times". Human Biology. 77 (2): 213–229. doi:10.1353/hub.2005.0041. hdl: 10216/109268 . PMID   16201138. S2CID   20901589. "Although the absolute value of observed U6 frequency in Iberia is low, it reveals a discernible North African female contribution, if we keep in mind that haplogroup U6 is not very common in North Africa itself and virtually absent in the rest of Europe. Indeed, because the range of variation in western North Africa is 4-28 percent, the estimated minimum input is 8.54 percent"
  61. González, Ana M.; Brehm, Antonio; Pérez, José A.; Maca-Meyer, Nicole; Flores, Carlos; Cabrera, Vicente M. (April 2003). "Mitochondrial DNA affinities at the Atlantic fringe of Europe: Mitochondrial DNA in Atlantic Europe". American Journal of Physical Anthropology. 120 (4): 391–404. doi:10.1002/ajpa.10168. PMID   12627534. "Our results clearly reinforce, extend, and clarify the preliminary clues of an 'important very ancient mtDNA contribution from northwest Africa into the Iberian Peninsula' (Côrte-Real et al., 1996; Rando et al., 1998; Flores et al., 2000a; Rocha et al., 1999)(...) Our own data allow us to make minimal estimates of the maternal African pre-Neolithic, Neolithic, and/or recent slave trade input into Iberia. For the former, we consider only the mean value of the U6 frequency in Northern African populations, excluding Saharans, Tuareg, and Mauritanians (16 percent), as the pre-Neolithic frequency in that area, and the present frequency in the whole Iberian Peninsula (2.3 percent) as the result of the northwest African gene flow at that time. The value obtained (14 percent) could be as high as 35 percent using the data of Corte-Real et al. (1996), or 27 percent with our north Portugal sample."
  62. Achilli, Alessandro; Olivieri, Anna; Pala, Maria; Metspalu, Ene; Fornarino, Simona; Battaglia, Vincenza; Accetturo, Matteo; Kutuev, Ildus; Khusnutdinova, Elsa; Pennarun, Erwan; Cerutti, Nicoletta; Di Gaetano, Cornelia; Crobu, Francesca; Palli, Domenico; Matullo, Giuseppe; Santachiara-Benerecetti, A. Silvana; Cavalli-Sforza, L. Luca; Semino, Ornella; Villems, Richard; Bandelt, Hans-Jürgen; Piazza, Alberto; Torroni, Antonio (April 2007). "Mitochondrial DNA Variation of Modern Tuscans Supports the Near Eastern Origin of Etruscans". The American Journal of Human Genetics. 80 (4): 759–768. doi:10.1086/512822. PMC   1852723 . PMID   17357081. "1.33% (3/226) in Calabria and 1.28 percent in Campania"
  63. Henn, B. M.; Botigué, L. R.; Gravel, S.; Wang, W.; Brisbin, A.; Byrnes, J. K.; Fadhlaoui-Zid, K.; Zalloua, P. A.; Moreno-Estrada, A. (2012). Schierup, Mikkel H (ed.). "Genomic Ancestry of North Africans Supports Back-to-Africa Migrations". PLOS Genetics. 8 (1): e1002397. doi: 10.1371/journal.pgen.1002397 . PMC   3257290 . PMID   22253600.
  64. 1 2 3 Henn, B. M.; Botigué, L. R.; Gravel, S.; Wang, W.; Brisbin, A.; Byrnes, J. K.; Fadhlaoui-Zid, K.; Zalloua, P. A.; Moreno-Estrada, A. (2012). Schierup, Mikkel H (ed.). "Genomic Ancestry of North Africans Supports Back-to-Africa Migrations". PLOS Genetics. 8 (1): e1002397. doi: 10.1371/journal.pgen.1002397 . PMC   3257290 . PMID   22253600.
  65. Hodgson, Jason A. (2014). "Early Back-to-Africa Migration into the Horn of Africa". PLOS Genetics. 10 (6): e1004393. doi: 10.1371/journal.pgen.1004393 . PMC   4055572 . PMID   24921250. The non-African ancestry in the HOA, which is primarily attributed to a novel Ethio-Somali inferred ancestry component, is significantly differentiated from all neighboring non-African ancestries in North Africa, the Levant, and Arabia. The Ethio-Somali ancestry is found in all admixed HOA ethnic groups, shows little inter-individual variance within these ethnic groups, is estimated to have diverged from all other non-African ancestries by at most 23 ka, and does not carry the unique Arabian lactase persistence allele that arose about 4 ka. Taking into account published mitochondrial, Y chromosome, paleoclimate, and archaeological data, we find that the time of the Ethio-Somali back-to-Africa migration is most likely pre-agricultural. ... While this Ethio-Somali IAC is found primarily in Africa, it has clear non-African affinities (Text S1). ... The most recent divergence date estimates for the Ethio-Somali ancestral population are with the Maghrebi and Arabian ancestral populations at 23 and 25 ka. ... In this model, later diversification and expansion within particular Afro-Asiatic language groups may be associated with agricultural expansions and transmissions, but the deep diversification of the group is pre-agricultural. We hypothesize that a population with substantial Ethio-Somali ancestry could be the proto-Afro-Asiatic speakers.
  66. Dobon, Begoña; Hassan, Hisham Y.; Laayouni, Hafid; Luisi, Pierre; Ricaño-Ponce, Isis; Zhernakova, Alexandra; Wijmenga, Cisca; Tahir, Hanan; Comas, David; Netea, Mihai G.; Bertranpetit, Jaume (September 2015). "The genetics of East African populations: a Nilo-Saharan component in the African genetic landscape". Scientific Reports. 5 (1): 9996. Bibcode:2015NatSR...5E9996D. doi:10.1038/srep09996. PMC   4446898 . PMID   26017457.
  67. Arauna, Lara R.; Mendoza-Revilla, Javier; Mas-Sandoval, Alex; Izaabel, Hassan; Bekada, Asmahan; Benhamamouch, Soraya; Fadhlaoui-Zid, Karima; Zalloua, Pierre; Hellenthal, Garrett; Comas, David (1 February 2017). "Recent Historical Migrations Have Shaped the Gene Pool of Arabs and Berbers in North Africa". Molecular Biology and Evolution. 34 (2): 318–329. doi:10.1093/molbev/msw218. ISSN   1537-1719. PMC   5644363 . PMID   27744413.
  68. Arauna, Lara R; Comas, David (15 September 2017). "Genetic Heterogeneity between Berbers and Arabs". eLS: 1–7. doi:10.1002/9780470015902.a0027485. ISBN   9780470016176. 1. A back-to-Africa migration replaced the population of North Africa in pre-Holocene times. 2. North African populations are very heterogeneous and are composed of North African, Middle Eastern, sub-Saharan and European genetic components. 3. No genetic differences have been found between Arab and Berber groups. 4. The Arab expansion had an important cultural and genetic impact in North Africa. 5. The Berber people are genetically diverse and heterogeneous.
  69. van de Loosdrecht; et al. (15 March 2018). "Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations". Science. 360 (6388): 548–552. Bibcode:2018Sci...360..548V. doi: 10.1126/science.aar8380 . ISSN   0036-8075. PMID   29545507.
  70. Henn, Brenna M.; Botigué, Laura R.; Gravel, Simon; Wang, Wei; Brisbin, Abra; Byrnes, Jake K.; Fadhlaoui-Zid, Karima; Zalloua, Pierre A.; Moreno-Estrada, Andres; Bertranpetit, Jaume; Bustamante, Carlos D. (12 January 2012). "Genomic Ancestry of North Africans Supports Back-to-Africa Migrations". PLOS Genetics. 8 (1): e1002397. doi: 10.1371/journal.pgen.1002397 . ISSN   1553-7390. PMC   3257290 . PMID   22253600.
  71. Fregel, Rosa; Méndez, Fernando L.; Bokbot, Youssef; Martín-Socas, Dimas; Camalich-Massieu, María D.; Santana, Jonathan; Morales, Jacob; Ávila-Arcos, María C.; Underhill, Peter A.; Shapiro, Beth; Wojcik, Genevieve (12 June 2018). "Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe". Proceedings of the National Academy of Sciences. 115 (26): 6774–6779. Bibcode:2018PNAS..115.6774F. doi: 10.1073/pnas.1800851115 . ISSN   0027-8424. PMC   6042094 . PMID   29895688.
  72. Choudhury, Ananyo; Aron, Shaun; Sengupta, Dhriti; Hazelhurst, Scott; Ramsay, Michèle (1 August 2018). "African genetic diversity provides novel insights into evolutionary history and local adaptations". Human Molecular Genetics. 27 (R2): R209–R218. doi:10.1093/hmg/ddy161. ISSN   0964-6906. PMC   6061870 . PMID   29741686.
  73. Pakstis, Andrew J.; Gurkan, Cemal; Dogan, Mustafa; Balkaya, Hasan Emin; Dogan, Serkan; Neophytou, Pavlos I.; Cherni, Lotfi; Boussetta, Sami; Khodjet-El-Khil, Houssein; Ben Ammar ElGaaied, Amel; Salvo, Nina Mjølsnes; Janssen, Kirstin; Olsen, Gunn-Hege; Hadi, Sibte; Almohammed, Eida Khalaf; Pereira, Vania; Truelsen, Ditte Mikkelsen; Bulbul, Ozlem; Soundararajan, Usha; Rajeevan, Haseena; Kidd, Judith R.; Kidd, Kenneth K. (December 2019). "Genetic relationships of European, Mediterranean, and SW Asian populations using a panel of 55 AISNPs". European Journal of Human Genetics. 27 (12): 1885–1893. doi:10.1038/s41431-019-0466-6. PMC   6871633 . PMID   31285530.
  74. Lucas-Sánchez, Marcel; Serradell, Jose M.; Comas, David (26 April 2021). "Population history of North Africa based on modern and ancient genomes". Human Molecular Genetics. 30 (R1): R17–R23. doi: 10.1093/hmg/ddaa261 . hdl: 10230/52340 . ISSN   1460-2083. PMID   33284971.
  75. Sánchez-Quinto, Federico; Botigué, Laura R.; Civit, Sergi; Arenas, Conxita; Ávila-Arcos, María C.; Bustamante, Carlos D.; Comas, David; Lalueza-Fox, Carles (17 October 2012). "North African Populations Carry the Signature of Admixture with Neandertals". PLOS ONE. 7 (10): e47765. Bibcode:2012PLoSO...747765S. doi: 10.1371/journal.pone.0047765 . PMC   3474783 . PMID   23082212.
  76. Khairat, Rabab; Ball, Markus; Chang, Chun-Chi Hsieh; Bianucci, Raffaella; Nerlich, Andreas G.; Trautmann, Martin; Ismail, Somaia; Shanab, Gamila M. L.; Karim, Amr M.; Gad, Yehia Z.; Pusch, Carsten M. (August 2013). "First insights into the metagenome of Egyptian mummies using next-generation sequencing". Journal of Applied Genetics. 54 (3): 309–325. doi:10.1007/s13353-013-0145-1. PMID   23553074. S2CID   5459033.
  77. Kefi R, Bouzaid E, Stevanovitch A, Beraud-Colomb E (June 2013). MITOCHONDRIAL DNA AND PHYLOGENETIC ANALYSIS OF PREHISTORIC NORTH AFRICAN POPULATIONS (PDF). 8th ISABS Conference in Forensic, Anthropologic and Medical Genetics and Mayo Clinic Lectures in Translational Medicine. Split, Croatia: ISABS. p. 232. ISBN   978-953-57695-0-7. Archived from the original (PDF) on 11 March 2016. Retrieved 17 January 2016.
  78. Bernard Secher; Rosa Fregel; José M Larruga; Vicente M Cabrera; Phillip Endicott; José J Pestano; Ana M González (2014). "The history of the North African mitochondrial DNA haplogroup U6 gene flow into the African, Eurasian and American continents". BMC Evolutionary Biology. 14 (1): 109. Bibcode:2014BMCEE..14..109S. doi: 10.1186/1471-2148-14-109 . PMC   4062890 . PMID   24885141.
  79. Ordóñez, Alejandra C.; Fregel, R.; Trujillo-Mederos, A.; Hervella, Montserrat; de-la-Rúa, Concepción; Arnay-de-la-Rosa, Matilde (February 2017). "Genetic studies on the prehispanic population buried in Punta Azul cave (El Hierro, Canary Islands)". Journal of Archaeological Science. 78: 20–28. Bibcode:2017JArSc..78...20O. doi:10.1016/j.jas.2016.11.004.
  80. Fregel, Rosa; Méndez, Fernando L.; Bokbot, Youssef; Martín-Socas, Dimas; Camalich-Massieu, María D.; Santana, Jonathan; Morales, Jacob; Ávila-Arcos, María C.; Underhill, Peter A.; Shapiro, Beth; Wojcik, Genevieve; Rasmussen, Morten; Soares, André E. R.; Kapp, Joshua; Sockell, Alexandra; Rodríguez-Santos, Francisco J.; Mikdad, Abdeslam; Trujillo-Mederos, Aioze; Bustamante, Carlos D. (26 June 2018). "Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe". Proceedings of the National Academy of Sciences. 115 (26): 6774–6779. Bibcode:2018PNAS..115.6774F. doi: 10.1073/pnas.1800851115 . PMC   6042094 . PMID   29895688.
  81. Serra-Vidal, Gerard; Lucas-Sanchez, Marcel; Fadhlaoui-Zid, Karima; Bekada, Asmahan; Zalloua, Pierre; Comas, David (18 November 2019). "Heterogeneity in Palaeolithic Population Continuity and Neolithic Expansion in North Africa". Current Biology. 29 (22): 3953–3959.e4. doi: 10.1016/j.cub.2019.09.050 . ISSN   0960-9822. PMID   31679935. S2CID   204972040.

Bibliography

  • Battaglia, Vincenza; Fornarino, Simona; Al-Zahery, Nadia; Olivieri, Anna; Pala, Maria; Myres, Natalie M; King, Roy J; Rootsi, Siiri; et al. (2008), "Y-chromosomal evidence of the cultural diffusion of agriculture in southeast Europe", European Journal of Human Genetics, 17 (6): 820–830, doi:10.1038/ejhg.2008.249, PMC   2947100 , PMID   19107149
  • Candelora, Danielle (2022). Candelora, Danielle; Ben-Marzouk, Nadia; Cooney, Kathyln (eds.). Ancient Egyptian society: challenging assumptions, exploring approaches. Abingdon, Oxon: Routledge. ISBN   9780367434632.
  • Mendizabal, Isabel; Sandoval, Karla; Berniell-Lee, Gemma; Calafell, Francesc; Salas, Antonio; Martinez-Fuentes, Antonio; Comas, David (2008), "Genetic origin, admixture, and asymmetry in maternal and paternal human lineages in Cuba", BMC Evol. Biol., 8 (1): 213, Bibcode:2008BMCEE...8..213M, doi: 10.1186/1471-2148-8-213 , PMC   2492877 , PMID   18644108
  • Paracchini; Pearce, CL; Kolonel, LN; Altshuler, D; Henderson, BE; Tyler-Smith, C (2003), "A Y chromosomal influence on prostate cancer risk: the multi-ethnic cohort study", J Med Genet, 40 (11): 815–819, doi:10.1136/jmg.40.11.815, PMC   1735314 , PMID   14627670
  • Silva; Carvalho, Elizeu; Costa, Guilherme; Tavares, Lígia; Amorim, António; Gusmão, Leonor (2006), "Y-chromosome genetic variation in Rio de Janeiro population", American Journal of Human Biology, 18 (6): 829–837, doi:10.1002/ajhb.20567, PMID   17039481, S2CID   23778828, archived from the original on 18 October 2012
  • Underhill, Peter A.; Shen, Peidong; Lin, Alice A.; Jin, Li; et al. (November 2000). "Y chromosome sequence variation and the history of human populations". Nature Genetics. 26 (3): 358–361. doi:10.1038/81685. PMID   11062480. S2CID   12893406.