This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
In anthropology, Sinodonty and Sundadonty are two patterns of features widely found in the dentitions of different East Asians. These patterns were identified by anthropologist Christy G. Turner II as being within the greater "Mongoloid dental complex". [1]
The combining forms Sino- and Sunda- refer to China and Sundaland, respectively, while -dont refers to teeth.
Tsunehiko Hanihara (1993) believed that the dental features of Aboriginal Australians have the characteristic of high frequencies of "evolutionarily conservative characteristics," which he called the "proto- sundadont" pattern, as he believed that the dental pattern of Aboriginal Australians was ancestral to that of Southeast Asians. [2]
C.G Turner II shows with his analysis of 2016 that sundadonty is the proto-East Eurasian dental morphology and is not connected to the Australian dental morphology, rendering the term "proto-sundadont" inaccurate for the Australian dental morphology. He also shows that sinodonty is predominant in Native Americans. [3]
Analysis on the Sinodonty and Sundadonty of New world groups by G.R. Sott et al. (2016) shows the distinction between East Asians is not nearly as dramatic as the difference between all Asians and all New World groups. Other researchers like Stojanowski et al., 2013; Stojanowski and Johnson, (2015) suggest New World groups may be neither Sinodont nor Sundadont and in most regards, could be viewed as super-Sinodont. A clear dental morphology not only ties New World groups to Asians, particularly northeast Asians, but it also exhibits a pattern largely consistent with the Beringian Standstill model (BSM) based on a Sinodont source population. [4]
Turner defined the Sinodont and Sundadont dental complexes in contrast to a broader Mongoloid dental complex. [5] Hanihara defined the Mongoloid dental complex in 1966. In 1984, Turner separated the Mongoloid dental complex into the Sinodont and Sundadont dental complexes. [6]
Ryuta Hamada, Shintaro Kondo and Eizo Wakatsuki (1997) said, on the basis of dental traits, that Mongoloids are separated into sinodonts and sundadonts, which is supported by Christy G. Turner II (1989). [7] [8]
Turner found the Sundadont pattern in the skeletal remains of Jōmon people of Japan, and in living populations of Taiwanese indigenous peoples, Filipinos, Indonesians, Borneans, and Malays.
In 1996, Rebecca Haydenblit of the Hominid Evolutionary Biology Research Group at Cambridge University did a study on the dentition of four Pre-Columbian era Mesoamerican populations and compared their data to other Eastern Eurasian populations. [9] She found that "Tlatilco", "Cuicuilco", "Monte Albán" and "Cholula" populations followed an overall Sundadont dental pattern "characteristic of Southeast Asia" rather than a Sinodont dental pattern "characteristic of Northeast Asia". [9]
Turner found the Sinodont pattern in the Han Chinese, in the inhabitants of Mongolia and eastern Siberia, in the Native Americans, and in the Yayoi people of Japan.
Sinodonty is a particular pattern of teeth characterized by the following features:
The EDAR gene causes the Sinodont tooth pattern, and also affects hair texture, [11] jaw morphology, [12] and perhaps the nutritional profile of breast milk. [13]
In the 1990s, Turner's dental morphological traits were frequently mentioned as one of three new tools for studying origins and migrations of human populations. The other two were linguistic methods such as Joseph Greenberg's mass comparison of vocabulary or Johanna Nichols's statistical study of language typology and its evolution, and genetic studies pioneered by Cavalli-Sforza.[ original research? ]
Today, the largest number of references to Turner's work are from discussions of the origin of Paleo-Amerindians and modern Native Americans, including the Kennewick Man controversy. Turner found that the dental remains of both ancient and modern Amerindians are more similar to each other than they are to dental complexes from other continents, but that the Sinodont patterns of the Paleo-Amerindians identify their ancestral homeland as north-east Asia. Some later studies[which?] have questioned this and found Sundadont features in some American peoples.
A study done by Stojonowski et al in 2015 found a "significant interobserver error" in the earlier studies and their statistical analysis of matched wear and morphology scores suggests trait downgrading for some traits. [14]
Dentition pertains to the development of teeth and their arrangement in the mouth. In particular, it is the characteristic arrangement, kind, and number of teeth in a given species at a given age. That is, the number, type, and morpho-physiology of the teeth of an animal.
Osteology is the scientific study of bones, practised by osteologists. A subdiscipline of anatomy, anthropology, and paleontology, osteology is the detailed study of the structure of bones, skeletal elements, teeth, microbone morphology, function, disease, pathology, the process of ossification from cartilaginous molds, and the resistance and hardness of bones (biophysics).
Hyperdontia is the condition of having supernumerary teeth, or teeth that appear in addition to the regular number of teeth. They can appear in any area of the dental arch and can affect any dental organ. The opposite of hyperdontia is hypodontia, where there is a congenital lack of teeth, which is a condition seen more commonly than hyperdontia. The scientific definition of hyperdontia is "any tooth or odontogenic structure that is formed from tooth germ in excess of usual number for any given region of the dental arch." The additional teeth, which may be few or many, can occur on any place in the dental arch. Their arrangement may be symmetrical or non-symmetrical.
The premolars, also called premolar teeth, or bicuspids, are transitional teeth located between the canine and molar teeth. In humans, there are two premolars per quadrant in the permanent set of teeth, making eight premolars total in the mouth. They have at least two cusps. Premolars can be considered transitional teeth during chewing, or mastication. They have properties of both the canines, that lie anterior and molars that lie posterior, and so food can be transferred from the canines to the premolars and finally to the molars for grinding, instead of directly from the canines to the molars.
Hypodontia is defined as the developmental absence of one or more teeth excluding the third molars. It is one of the most common dental anomalies, and can have a negative impact on function, and also appearance. It rarely occurs in primary teeth and the most commonly affected are the adult second premolars and the upper lateral incisors. It usually occurs as part of a syndrome that involves other abnormalities and requires multidisciplinary treatment.
Shovel-shaped incisors are incisors whose lingual surfaces are scooped as a consequence of lingual marginal ridges, crown curvature, or basal tubercles, either alone or in combination.
Talon cusp is a rare dental anomaly resulting in an extra cusp or cusp-like projection on an anterior tooth, located on the inside surface of the affected tooth. Sometimes it can also be found on the facial surface of the anterior tooth.
Overjet is the extent of horizontal (anterior-posterior) overlap of the maxillary central incisors over the mandibular central incisors. In class II malocclusion the overjet is increased as the maxillary central incisors are protruded.
Ectodysplasin A receptor (EDAR) is a protein that in humans is encoded by the EDAR gene. EDAR is a cell surface receptor for ectodysplasin A which plays an important role in the development of ectodermal tissues such as the skin. It is structurally related to members of the TNF receptor superfamily.
A toothcomb is a dental structure found in some mammals, comprising a group of front teeth arranged in a manner that facilitates grooming, similar to a hair comb. The toothcomb occurs in lemuriform primates, treeshrews, colugos, hyraxes, and some African antelopes. The structures evolved independently in different types of mammals through convergent evolution and vary both in dental composition and structure. In most mammals the comb is formed by a group of teeth with fine spaces between them. The toothcombs in most mammals include incisors only, while in lemuriform primates they include incisors and canine teeth that tilt forward at the front of the lower jaw, followed by a canine-shaped first premolar. The toothcombs of colugos and hyraxes take a different form with the individual incisors being serrated, providing multiple tines per tooth.
Enamel hypoplasia is a defect of the teeth in which the enamel is deficient in quantity, caused by defective enamel matrix formation during enamel development, as a result of inherited and acquired systemic condition(s). It can be identified as missing tooth structure and may manifest as pits or grooves in the crown of the affected teeth, and in extreme cases, some portions of the crown of the tooth may have no enamel, exposing the dentin. It may be generalized across the dentition or localized to a few teeth. Defects are categorized by shape or location. Common categories are pit-form, plane-form, linear-form, and localised enamel hypoplasia. Hypoplastic lesions are found in areas of the teeth where the enamel was being actively formed during a systemic or local disturbance. Since the formation of enamel extends over a long period of time, defects may be confined to one well-defined area of the affected teeth. Knowledge of chronological development of deciduous and permanent teeth makes it possible to determine the approximate time at which the developmental disturbance occurred. Enamel hypoplasia varies substantially among populations and can be used to infer health and behavioural impacts from the past. Defects have also been found in a variety of non-human animals.
A tooth is a hard, calcified structure found in the jaws of many vertebrates and used to break down food. Some animals, particularly carnivores and omnivores, also use teeth to help with capturing or wounding prey, tearing food, for defensive purposes, to intimidate other animals often including their own, or to carry prey or their young. The roots of teeth are covered by gums. Teeth are not made of bone, but rather of multiple tissues of varying density and hardness that originate from the outermost embryonic germ layer, the ectoderm.
Odontometrics is the measurement and study of tooth size. It is used in biological anthropology and bioarchaeology to study human phenotypic variation. The rationale for use is similar to that of the study of dentition, the structure and arrangement of teeth. There are a number of features that can be observed in human teeth through the use of odontometrics.
Teeth are common to most vertebrates, but mammalian teeth are distinctive in having a variety of shapes and functions. This feature first arose among early therapsids during the Permian, and has continued to the present day. All therapsid groups with the exception of the mammals are now extinct, but each of these groups possessed different tooth patterns, which aids with the classification of fossils.
Maxillary lateral incisor agenesis (MLIA) is lack of development (agenesis) of one or both of the maxillary lateral incisor teeth. In normal human dentition, this would be the second tooth on either side from the center of the top row of teeth. The condition is bilateral if the incisor is absent on both sides or unilateral if only one is missing. It appears to have a genetic component.
The 'Two Layer' Hypothesis, or immigration hypothesis, is an archaeological hypothese that suggests the human occupation of mainland Southeast Asia occurred over two distinct periods by two separate racial groups, hence the term 'layer'. According to the Two Layer Hypothesis, early indigenous Australo-Melanesian peoples comprised the first population of Southeast Asia before their genetic integration with a second wave of inhabitants from East Asia, including Southern China, during the agricultural expansion of the Neolithic. The majority of evidence for the Two Layer Hypothesis consists of dental and morphometric analyses from archaeological sites throughout Southeast Asia, most prominently Thailand and Vietnam.
Changes to the dental morphology and jaw are major elements of hominid evolution. These changes were driven by the types and processing of food eaten. The evolution of the jaw is thought to have facilitated encephalization, speech, and the formation of the uniquely human chin.
The ASUDAS is a reference system for collecting data on human tooth morphology and variation created by Christy G. Turner II, Christian R. Nichol, and G. Richard Scott. The ASUDAS gives detailed descriptions for common crown and root shape variants and their different degrees of expression. It also comprises a set of reference plaques illustrating dental variants as well as showing their expression levels in 3D. The ASUDAS was designed to ensure a standardized scoring procedure with minimum error in order to warrant comparability between data collected by different observers.
Near Eastern bioarchaeology covers the study of human skeletal remains from archaeological sites in Cyprus, Egypt, Levantine coast, Jordan, Turkey, Iran, Saudi Arabia, Qatar, Kuwait, Bahrain, United Arab Emirates, Oman, and Yemen.
The analysis of dental remains is a valuable tool to archaeologists. Teeth are hard, highly mineralised and chemically stable, so therefore preserve well and are one of the most commonly found animals remains. Analysis of these remains also yields a wealth of information. It can not only be used to determine the sex and age of the individual whose mandibular or dental remains have been found, but can also shed light on their diet, pathology, and even their geographic origins through isotope analysis.