Silas D. Alben

Last updated
Silas D. Alben
Nationality American
Alma mater New York University
Harvard University
Scientific career
Fields Biomechanics
Numerical methods
Control theory
Institutions Georgia Institute of Technology
University of Michigan
Doctoral advisor Michael Shelley

Silas D. Alben is an American mathematician. His is Professor of Mathematics and Director of the Applied and Interdisciplinary Mathematics Program at the University of Michigan. His research addresses problems from biology (especially biomechanics) and engineering that can be studied with the tools of applied mathematics and continuum mechanics.

Contents

Biography

Education

Silas Alben attended Harvard College where he received in 1999 A.B. degrees in Mathematics and Physics, magna cum laude. [1] In 2000, he joined the Courant Institute of Mathematical Sciences at New York University, where he received a Ph.D. in Mathematics in 2004. His thesis Drag Reduction by Self-Similar Bending and a Transition to Forward Flight by a Symmetry-Breaking Instability was advised by Michael Shelley. [2]

Research

Alben's research focuses on problems arising in biomechanics, material science, and fluid mechanics. As a graduate student at NYU, Alben worked with Jun Zhang and Michael Shelley in investigating the dynamics of flexible structures and how such structures can become more aerodynamic by altering their shape. In this study, experiments visualized a short glass fiber deforming in fluid flow, and analysis showed how the fiber can reduce the drag force exerted by the fluid by changing its shape. This work was published 2002 in Nature under the title Drag Reduction Through Self-Similar Bending of a Flexible Body, [3] and was the subject of various news articles in periodicals including The New York Times [4] and others. [5] As a Postdoctoral Fellow at Harvard, Alben collaborated with Ernst A. van Nierop and Michael P. Brenner in a paper titled "How Bumps on Whale Flippers Delay Stall: An Aerodynamic Model". [6] The paper gave a mathematical model for this hydrodynamic phenomenon. This result, featured in MIT's Technology Review [7] and Nature, [8] provides a theoretical basis for potential improvements in using bumps for more stable airplanes, more agile submarines, and more efficient turbine blades. In 2007, Alben investigated (with Michael P. Brenner) the self-assembly of a 3D structures from flat, elastic sheets. This experiment, featured on New Scientist , [9] presented a new technique in nano construction; previously, the transformation of flat sheets to 3D structures were performed by random formation, but in this study, the addition of biases into the design of the sheets gave the possibility of predicting the resulting shape.

Honors and awards

Related Research Articles

<span class="mw-page-title-main">Wing</span> Surface used for flight, for example by insects, birds, bats and airplanes

A wing is a type of fin that produces lift while moving through air or some other fluid. Accordingly, wings have streamlined cross-sections that are subject to aerodynamic forces and act as airfoils. A wing's aerodynamic efficiency is expressed as its lift-to-drag ratio. The lift a wing generates at a given speed and angle of attack can be one to two orders of magnitude greater than the total drag on the wing. A high lift-to-drag ratio requires a significantly smaller thrust to propel the wings through the air at sufficient lift.

<span class="mw-page-title-main">Pattern</span> Regularity in sensory qualia or abstract ideas

A pattern is a regularity in the world, in human-made design, or in abstract ideas. As such, the elements of a pattern repeat in a predictable manner. A geometric pattern is a kind of pattern formed of geometric shapes and typically repeated like a wallpaper design.

<span class="mw-page-title-main">Shock absorber</span> Mechanical component

A shock absorber or damper is a mechanical or hydraulic device designed to absorb and damp shock impulses. It does this by converting the kinetic energy of the shock into another form of energy which is then dissipated. Most shock absorbers are a form of dashpot.

<span class="mw-page-title-main">Rorqual</span> Family of mammals

Rorquals are the largest group of baleen whales, which comprise the family Balaenopteridae, containing ten extant species in three genera. They include the largest animal that has ever lived, the blue whale, which can reach 180 tonnes, and the fin whale, which reaches 120 tonnes ; even the smallest of the group, the northern minke whale, reaches 9 tonnes.

A hydrostatic skeleton, or hydroskeleton, is a flexible skeleton supported by fluid pressure. Hydrostatic skeletons are common among simple invertebrate organisms. While more advanced organisms can be considered hydrostatic, they are sometimes referred to as hydrostatic for their possession of a hydrostatic organ instead of a hydrostatic skeleton. A hydrostatic organ and a hydrostatic skeleton may have the same capabilities, but they are not the same. Hydrostatic organs are more common in advanced organisms, while hydrostatic skeletons are more common in primitive organisms. As its name suggests, containing hydro meaning "water", being hydrostatic means that the skeleton or organ is fluid-filled.

<span class="mw-page-title-main">Flipper (anatomy)</span> Flattened limb adapted for propulsion and maneuvering in water

A flipper is a broad, flattened limb adapted for aquatic locomotion. It refers to the fully webbed, swimming appendages of aquatic vertebrates that are not fish.

<span class="mw-page-title-main">Drafting (aerodynamics)</span> Technique where two moving objects are caused to align in a close group reducing the overall drag

Drafting or slipstreaming is an aerodynamic technique where two vehicles or other moving objects are caused to align in a close group, reducing the overall effect of drag due to exploiting the lead object's slipstream. Especially when high speeds are involved, as in motor racing and cycling, drafting can significantly reduce the paceline's average energy expenditure required to maintain a certain speed and can also slightly reduce the energy expenditure of the lead vehicle or object.

In fluid dynamics, drag is a force acting opposite to the relative motion of any object moving with respect to a surrounding fluid. This can exist between two fluid layers or between a fluid and a solid surface.

<span class="mw-page-title-main">Propeller (aeronautics)</span> Aircraft propulsion component

An aircraft propeller, also called an airscrew, converts rotary motion from an engine or other power source into a swirling slipstream which pushes the propeller forwards or backwards. It comprises a rotating power-driven hub, to which are attached several radial airfoil-section blades such that the whole assembly rotates about a longitudinal axis. The blade pitch may be fixed, manually variable to a few set positions, or of the automatically variable "constant-speed" type.

Wing-shape optimization is a software implementation of shape optimization primarily used for aircraft design. This allows for engineers to produce more efficient and cheaper aircraft designs.

<span class="mw-page-title-main">Thermowell</span>

Thermowells are cylindrical fittings used to protect temperature sensors installed in industrial processes. A thermowell consists of a tube closed at one end and mounted in the process stream. A temperature sensor such as a thermometer, thermocouple, or resistance temperature detector is inserted in the open end of the tube, which is usually in the open air outside the process piping or vessel and any thermal insulation. Thermodynamically, the process fluid transfers heat to the thermowell wall, which in turn transfers heat to the sensor. Since more mass is present with a sensor-well assembly than with a probe directly immersed into the process, the sensor's response to process temperature changes is slowed by the addition of the well. If the sensor fails, it can be easily replaced without draining the vessel or piping. Since the mass of the thermowell must be heated to the process temperature, and since the walls of the thermowell conduct heat out of the process, sensor accuracy and responsiveness is reduced by the addition of a thermowell.

<span class="mw-page-title-main">Aquatic locomotion</span>

Aquatic locomotion or swimming is biologically propelled motion through a liquid medium. The simplest propulsive systems are composed of cilia and flagella. Swimming has evolved a number of times in a range of organisms including arthropods, fish, molluscs, amphibians, reptiles, birds, and mammals.

<span class="mw-page-title-main">Fin and flipper locomotion</span>

Fin and flipper locomotion occurs mostly in aquatic locomotion, and rarely in terrestrial locomotion. From the three common states of matter — gas, liquid and solid, these appendages are adapted for liquids, mostly fresh or saltwater and used in locomotion, steering and balancing of the body. Locomotion is important in order to escape predators, acquire food, find mates and bury for shelter, nest or food. Aquatic locomotion consists of swimming, whereas terrestrial locomotion encompasses walking, 'crutching', jumping, digging as well as covering. Some animals such as sea turtles and mudskippers use these two environments for different purposes, for example using the land for nesting, and the sea to hunt for food.

<span class="mw-page-title-main">Tradeoffs for locomotion in air and water</span> Comparison of swimming and flying, evolution and biophysics

Certain species of fish and birds are able to locomote in both air and water, two fluid media with very different properties. A fluid is a particular phase of matter that deforms under shear stresses and includes any type of liquid or gas. Because fluids are easily deformable and move in response to applied forces, efficiently locomoting in a fluid medium presents unique challenges. Specific morphological characteristics are therefore required in animal species that primarily depend on fluidic locomotion. Because the properties of air and water are so different, swimming and flying have very disparate morphological requirements. As a result, despite the large diversity of animals that are capable of flight or swimming, only a limited number of these species have mastered the ability to both fly and swim. These species demonstrate distinct morphological and behavioral tradeoffs associated with transitioning from air to water and water to air.

Collapsible flow is a phenomenon that occurs in steady flow in tubes with significant distensibility, or the capability of swelling or stretching, under conditions of lower internal pressure relative to pressure outside the tube. Such conditions occur rarely in industrial applications but are very common in biological studies such as blood flow in veins and air flow in lungs.

<span class="mw-page-title-main">Patterns in nature</span> Visible regularity of form found in the natural world

Patterns in nature are visible regularities of form found in the natural world. These patterns recur in different contexts and can sometimes be modelled mathematically. Natural patterns include symmetries, trees, spirals, meanders, waves, foams, tessellations, cracks and stripes. Early Greek philosophers studied pattern, with Plato, Pythagoras and Empedocles attempting to explain order in nature. The modern understanding of visible patterns developed gradually over time.

<span class="mw-page-title-main">Tubercle effect</span>

The tubercle effect is a phenomenon where tubercles or large 'bumps' on the leading edge of an airfoil can improve its aerodynamics. The effect, while already discovered, was analyzed extensively by Frank E. Fish et al in the early 2000 onwards. The tubercle effect works by channeling flow over the airfoil into more narrow streams, creating higher velocities. Another side effect of these channels is the reduction of flow moving over the wingtip and resulting in less parasitic drag due to wingtip vortices. Using computational modeling, it was determined that the presence of tubercles produces a delay in the angle of attack until stall, thereby increasing maximum lift and decreasing drag. Fish first discovered this effect when looking at the fins of humpback whales. These whales are the only known organisms to take advantage of the tubercle effect. It is believed that this effect allows them to be much more manoeuvrable in the water, allowing for easier capture of prey. The tubercles on their fins allow them to do aquatic maneuvers to catch their prey.

<span class="mw-page-title-main">Soft robotics</span> Subfield of robotics

Soft robotics is a subfield of robotics that concerns the design, control, and fabrication of robots composed of compliant materials, instead of rigid links. In contrast to rigid-bodied robots built from metals, ceramics and hard plastics, the compliance of soft robots can improve their safety when working in close contact with humans.

<span class="mw-page-title-main">Droplet cluster</span> Self-assembled levitating monolayer of microdroplets


Droplet cluster is a self-assembled levitating monolayer of microdroplets usually arranged into a hexagonally ordered structure over a locally heated thin layer of water. The droplet cluster is typologically similar to colloidal crystals. The phenomenon was observed for the first time in 2004, and it has been extensively studied after that.

Cell biomechanics a branch of biomechanics that involves single molecules, molecular interactions, or cells as the system of interest. Cells generate and maintain mechanical forces within their environment as a part of their physiology. Cell biomechanics deals with how mRNA, protein production, and gene expression is affected by said environment and with mechanical properties of isolated molecules or interaction of proteins that make up molecular motors.

References

  1. APS biography of Silas Alben
  2. Alben, S. (2004). Drag reduction by self-similar bending and a transition to forward flight by a symmetry breaking instability.
  3. Alben, S.; Shelley, M.; Zhang, J. (2002). "Drag reduction through self-similar bending of a flexible body" (PDF). Nature. 420 (6915): 479–481. Bibcode:2002Natur.420..479A. doi:10.1038/nature01232. PMID   12466836. S2CID   4414018 . Retrieved 2008-06-29.
  4. Nature's Secret to Building for Strength: Flexibility
  5. NYU scientists show the benefits of being flexible
  6. Van Nierop, E.A.; Alben, S.; Brenner, M.P. (2008). "How Bumps on Whale Flippers Delay Stall: An Aerodynamic Model". Physical Review Letters. 100 (5): 54502. Bibcode:2008PhRvL.100e4502V. doi:10.1103/PhysRevLett.100.054502. PMID   18352375.
  7. Whale-Inspired Wind Turbines
  8. Fluid dynamics: Lifting a whale
  9. Self-assembly could simplify nanotech construction