Silver diammine fluoride

Last updated
Silver diammine fluoride
Clinical data
Trade names Fagamin, Advantage Arrest
Other namesDiammine Silver Fluoride, Diamine silver fluoride
ATC code
  • None
Legal status
Legal status
  • US: ℞-only and 510(k) cleared class II medical device
Identifiers
  • Diamminesilver(I) fluoride
CAS Number
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula AgFH6N2
Molar mass 160.929 g·mol−1
3D model (JSmol)
  • F[Ag]([NH3])[NH3]
  • InChI=InChI=1S/Ag.FH.2H3N/h;1H;2*1H3/q+1;;;/p-1

Silver diammine fluoride (SDF), also known as silver diamine fluoride in most of the dental literature, (although this is a chemical misnomer) is a topical medication used to treat and prevent dental caries (tooth decay) and relieve dentinal hypersensitivity. [1] It is a colorless (most products) or blue-tinted (Advantage Arrest, SilverSense SDF), odourless liquid composed of silver, ammonium and fluoride ions at a pH of 10.4 (most products) or 13 (Riva Star). [2] Ammonia compounds reduce the oxidative potential of SDF, increase its stability and helps to maintain a constant concentration over a period of time, rendering it safe for use in the mouth. [3] Silver and fluoride ions possess antimicrobial properties [1] and are used in the remineralization of enamel and dentin on teeth for preventing and arresting dental caries. [4] [5]

Contents

SDF is also known as diammine silver fluoride, silver fluoride, and silver ammonium fluoride. It is frequently spelled "silver diamine fluoride" (with one m); however, this is a misnomer, as SDF contains two ammine (NH3) groups, not amine (NH2) groups. [6]

Based on the current, best available evidence, SDF can be used by licensed dental professionals. In the UK, this is classified as 'off-label' [7] use of a topical medicament for arresting caries as it is licensed for treatment of dentine hypersensitivity. [1] It is supported by a robust, extensive evidence base [8] [9] [10] [11] with regard to its efficacy and can be used as long as the following criteria are realised: there is a body of evidence supporting its efficacy; and there is no alternative, licensed medicine. [12]

The product was cleared for sale by the U.S. Food and Drug Administration as a Class II medical device for the treatment of dentinal hypersensitivity, [13] and has been classified as an ‘effective, efficient, equitable and safe caries-preventative agent’ by the Institute of Medicine and the Millennium Goals of the World Health Organization in 2009. [1]

It is on the World Health Organization's List of Essential Medicines. [14]

Brand names

Indications and Contraindications of SDF

Indications

An example of a SDF Patient Information Leaflet for parents and children to allow discussion over treatment. It shows teeth with tooth decay before, and after, treatment with SDF where the tooth decay has become darkly stained. SDF patient info leaflet.pdf
An example of a SDF Patient Information Leaflet for parents and children to allow discussion over treatment. It shows teeth with tooth decay before, and after, treatment with SDF where the tooth decay has become darkly stained.

SDF use is indicated in the clinical scenarios listed below.

Patients

Teeth

Contraindications

The use of SDF is contraindicated in the following scenarios:

Patients

Teeth

Mode of action

SDF's mode of action is well documented, but remains contested. Rosenblatt et al. [1] summarized how the constituents in SDF each have a role in the arrest of microbial species that cause dental caries. The higher the concentration of fluoride in a compound, the more effective its mechanisms in inhibiting bacterial biofilm formation. Fluorides can bind to bacterial cell walls, inhibiting enzymatic processes associated with sugar uptake and metabolism of carbohydrate, therefore producing a surface more resistant to acid dissolution. [2] [22]

Similarly, the silver in SDF kills cariogenic bacteria by interacting with DNA and cellular proteins. This leads to cessation of cellular metabolism preventing bacterial cell wall synthesis and DNA synthesis, and ATP production. These actions destroy plaque biofilms, and subsequently arrest dental caries. [22] [23]

SDF hardens carious dentin, such that it is twice as hard as healthy dentin [24]

Effect on cariogenic bacteria

Colony Forming Unit counts (CFU) and studies of multispecies carious biofilms were carried aiming to examine the action of SDF on cariogenic bacteria. [2] CFU counts on Streptococci mutans , Actinomyces naeslundii , Lactobacillus acidophilus, Streptococcus sobrinus, Lactobacillus rhamnosus (all of which are bacteria intimately associated with the carious process) were significant lower in both dentin surfaces and demineralized dentin treated with SDF when compared to water application. SDF also inhibits the adherence of S.mutans to tooth surfaces. [2]

Targino et al. (2014) reported that minimum bacterial concentration and minimum inhibitory concentration of SDF for S.mutans were 50.0 ug/ml and 33.3 ug/ml respectively. [25] This shows that SDF as a compound has better bactericidal effects than silver ammonium nitrate and sodium fluoride (commonly found in toothpastes). [26] [27]

Effect on organic content on dentin

The affected layer of carious dentin in teeth can be identified by the presence of intact collagen fibres. Studies have revealed that a larger amount of intact collagen fibres remain on dentine surfaces (perpendicular to the enamel dentine junction) when treated with SDF as compared to water. [2]

SDF inhibits proteolytic activities such as enzymatic degradation of collagen fibres by matrix metalloproteinases MMP-2, 8 and 9. [2] Furthermore, SDF stops the degradation of cysteine cathepsins, which are also responsible for dentine collagen degradation. [23]

A systematic review conducted by Contreras et al. in 2017 concluded that 30% and 38% concentrations of SDF were most effective for caries arrest. [28] One of the clinical trials in this systematic review found 38% SDF to be significantly more effective for the prevention of caries in primary teeth, with 80% fewer new lesions in primary teeth, and 65% fewer new lesions in first permanent molars. [29] Yee et al. (2009) compared the effectiveness of 38% against 12% SDF, with or without using a reducing agent for the caries arrest. Over a 24-month period, it was concluded that there was a higher rate of lesion arrest in teeth treated with 38% SDF (with and without the reducing agents) as compared to 12% SDF. [30]

Frequency of application

A randomised clinical trial conducted by Zhi et al. (2012) found that increasing the frequency of SDF application from once to twice per year increased the rate of caries arrest. [31] The American Academy of Paediatric Dentistry (AAPD) recommends a 2-4 week follow-up to assess the arrest of carious lesions treated with SDF. [32] [33] If the lesions do not appear to have arrested (i.e. dark in colour and tactilely hard), it is suggested by them to reapply. Subsequent restoration of the carious lesion may be indicated following the application of SDF to restore aesthetics. If these lesions are not restored following SDF application, the AAPD recommends application biannually, as this has shown an increased caries lesion arrest rate as compared to annual application. [34]

Maximum dose

Average LD50 in mice and rats by oral administration was 520 mg/kg, and by subcutaneous administration was 380 mg/kg. The subcutaneous route is taken here as a worst-case scenario. One drop (32.5 μL) is ample material to treat 5 teeth, and contains 12.35 mg silver diamine fluoride. Assuming the smallest child with caries would be in the range of 10 kg, the dose would be 1.235 mg / kg child. Based on this, UCSF recommended 1 drop per 10 kg of body weight per visit. [15]

The US FDA reviewed the dose limit based on all evidence for the US multi-centered clinical trial sponsored by the NIH and FDA run by UM, NYU, and UIowa, and set a dose limit of 260 µL for any patient 12 – 59 months old at the start of the study. ClinicalTrials.gov Identifier: NCT03649659.

Precautions and adverse effects

The main side effect of SDF is non-medical and is the prominent black staining of carious tooth tissue where the solution is applied. [35]

SDF will stain most things it touches, including skin, mucous membranes, clothing and work surfaces. Chu et al. reported on the first modern clinical trial of SDF that the stain was generally acceptable and "the presence of darkened teeth was mentioned by around 7% of the parents." [36]

Another side effect is an intensely bitter metallic flavor, which subsides in minutes.

No serious adverse reactions (e.g. life-threatening reactions, hospitalization, toxicity or death) have been reported in the scientific literature. Two safety studies have been done in children. [37] [38]

Pharmacokinetic studies in adults found no adverse effects and demonstrated a lack of any increase of Fluoride in the blood. Increases in serum Silver were observed. [39]

Systematic reviews [40] [15] [11] [41] [42] [28] [32] [19] [1] reported adverse reactions following SDF use. These reactions manifested as small, white lesions of the oral mucosa that healed over the course of 48 hours. Furthermore, an umbrella review by Seifo et al. (2020) did not report any serious adverse reactions. [8]

Arresting caries progression

History

Related Research Articles

<span class="mw-page-title-main">Tooth decay</span> Deformation of teeth due to acids produced by bacteria

Tooth decay, also known as cavities or caries, is the breakdown of teeth due to acids produced by bacteria. The cavities may be a number of different colors from yellow to black. Symptoms may include pain and difficulty with eating. Complications may include inflammation of the tissue around the tooth, tooth loss and infection or abscess formation.

Dental restoration, dental fillings, or simply fillings are treatments used to restore the function, integrity, and morphology of missing tooth structure resulting from caries or external trauma as well as to the replacement of such structure supported by dental implants. They are of two broad types—direct and indirect—and are further classified by location and size. A root canal filling, for example, is a restorative technique used to fill the space where the dental pulp normally resides.

<span class="mw-page-title-main">Pulp (tooth)</span> Part in the center of a tooth made up of living connective tissue and cells called odontoblasts

The pulp is the connective tissue, nerves, blood vessels, and odontoblasts that comprise the innermost layer of a tooth. The pulp's activity and signalling processes regulate its behaviour.

Dental sealants are a dental treatment intended to prevent tooth decay. Teeth have recesses on their biting surfaces; the back teeth have fissures (grooves) and some front teeth have cingulum pits. It is these pits and fissures that are most vulnerable to tooth decay because food and bacteria stick in them and because they are hard-to-clean areas. Dental sealants are materials placed in these pits and fissures to fill them in, creating a smooth surface which is easy to clean. Dental sealants are mainly used in children who are at higher risk of tooth decay, and are usually placed as soon as the adult molar teeth come through.

<span class="mw-page-title-main">Deciduous teeth</span> First set of teeth in diphyodonts

Deciduous teeth or primary teeth, also informally known as baby teeth, milk teeth, or temporary teeth, are the first set of teeth in the growth and development of humans and other diphyodonts, which include most mammals but not elephants, kangaroos, or manatees, which are polyphyodonts. Deciduous teeth develop during the embryonic stage of development and erupt during infancy. They are usually lost and replaced by permanent teeth, but in the absence of their permanent replacements, they can remain functional for many years into adulthood.

<span class="mw-page-title-main">Dental abrasion</span> Medical condition

Abrasion is the non-carious, mechanical wear of tooth from interaction with objects other than tooth-tooth contact. It most commonly affects the premolars and canines, usually along the cervical margins. Based on clinical surveys, studies have shown that abrasion is the most common but not the sole aetiological factor for development of non-carious cervical lesions (NCCL) and is most frequently caused by incorrect toothbrushing technique.

<span class="mw-page-title-main">Fluoride therapy</span> Medical use of fluoride

Fluoride therapy is the use of fluoride for medical purposes. Fluoride supplements are recommended to prevent tooth decay in children older than six months in areas where the drinking water is low in fluoride. It is typically used as a liquid, pill, or paste by mouth. Fluoride has also been used to treat a number of bone diseases.

<span class="mw-page-title-main">Dentinogenesis imperfecta</span> Medical condition

Dentinogenesis imperfecta (DI) is a genetic disorder of tooth development. It is inherited in an autosomal dominant pattern, as a result of mutations on chromosome 4q21, in the dentine sialophosphoprotein gene (DSPP). It is one of the most frequently occurring autosomal dominant features in humans. Dentinogenesis imperfecta affects an estimated 1 in 6,000-8,000 people.

<span class="mw-page-title-main">Early childhood caries</span> Dental disease of young children

Early childhood caries (ECC), formerly known as nursing bottle caries, baby bottle tooth decay, night bottle mouth and night bottle caries, is a disease that affects teeth in children aged between birth and 71 months. ECC is characterized by the presence of 1 or more decayed, missing, or filled tooth surfaces in any primary tooth. ECC has been shown to be a very common, transmissible bacterial infection, usually passed from the primary caregiver to the child. The main bacteria responsible for dental cavities are Streptococcus mutans (S.mutans) and Lactobacillus. There is also evidence that supports that those who are in lower socioeconomic populations are at greater risk of developing ECC.

Dentin hypersensitivity is dental pain which is sharp in character and of short duration, arising from exposed dentin surfaces in response to stimuli, typically thermal, evaporative, tactile, osmotic, chemical or electrical; and which cannot be ascribed to any other dental disease.

<span class="mw-page-title-main">Glass ionomer cement</span> Material used in dentistry as a filling material and luting cement

A glass ionomer cement (GIC) is a dental restorative material used in dentistry as a filling material and luting cement, including for orthodontic bracket attachment. Glass-ionomer cements are based on the reaction of silicate glass-powder and polyacrylic acid, an ionomer. Occasionally water is used instead of an acid, altering the properties of the material and its uses. This reaction produces a powdered cement of glass particles surrounded by matrix of fluoride elements and is known chemically as glass polyalkenoate. There are other forms of similar reactions which can take place, for example, when using an aqueous solution of acrylic/itaconic copolymer with tartaric acid, this results in a glass-ionomer in liquid form. An aqueous solution of maleic acid polymer or maleic/acrylic copolymer with tartaric acid can also be used to form a glass-ionomer in liquid form. Tartaric acid plays a significant part in controlling the setting characteristics of the material. Glass-ionomer based hybrids incorporate another dental material, for example resin-modified glass ionomer cements (RMGIC) and compomers.

<span class="mw-page-title-main">Fluoride varnish</span> Highly concentrated form of fluoride

Fluoride varnish is a highly concentrated form of fluoride which is applied to the tooth's surface, by a dentist, dental hygienist or other health care professional, as a type of topical fluoride therapy. It is not a permanent varnish but due to its adherent nature it is able to stay in contact with the tooth surface for several hours. It may be applied to the enamel, dentine or cementum of the tooth and can be used to help prevent decay, remineralise the tooth surface and to treat dentine hypersensitivity. There are more than 30 fluoride-containing varnish products on the market today, and they have varying compositions and delivery systems. These compositional differences lead to widely variable pharmacokinetics, the effects of which remain largely untested clinically.

<span class="mw-page-title-main">Remineralisation of teeth</span>

Tooth remineralization is the natural repair process for non-cavitated tooth lesions, in which calcium, phosphate and sometimes fluoride ions are deposited into crystal voids in demineralised enamel. Remineralization can contribute towards restoring strength and function within tooth structure.

<span class="mw-page-title-main">Pulpotomy</span>

Pulpotomy is a minimally invasive procedure performed in children on a primary tooth with extensive caries but without evidence of root pathology. The minimally invasive endodontic techniques of vital pulp therapy (VPT) are based on improved understanding of the capacity of pulp (nerve) tissues to heal and regenerate plus the availability of advanced endodontic materials. During the caries removal, this results in a carious or mechanical pulp exposure (bleeding) from the cavity. During pulpotomy, the inflamed/diseased pulp tissue is removed from the coronal pulp chamber of the tooth leaving healthy pulp tissue which is dressed with a long-term clinically successful medicament that maintains the survival of the pulp and promotes repair. There are various types of medicament placed above the vital pulp such as Buckley's Solution of formocresol, ferric sulfate, calcium hydroxide or mineral trioxide aggregate (MTA). MTA is a more recent material used for pulpotomies with a high rate of success, better than formocresol or ferric sulfate. It is also recommended to be the preferred pulpotomy agent in the future. After the coronal pulp chamber is filled, the tooth is restored with a filling material that seals the tooth from microleakage, such as a stainless steel crown which is the most effective long-term restoration. However, if there is sufficient remaining supporting tooth structure, other filling materials such as amalgam or composite resin can provide a functional alternative when the primary tooth has a life span of two years or less. The medium- to long-term treatment outcomes of pulpotomy in symptomatic permanent teeth with caries, especially in young people, indicate that pulpotomy can be a potential alternative to root canal therapy (RCT).

Minimal intervention dentistry is a modern dental practice designed around the principal aim of preservation of as much of the natural tooth structure as possible. It uses a disease-centric philosophy that directs attention to first control and management of the disease that causes tooth decay—dental caries—and then to relief of the residual symptoms it has left behind—the decayed teeth. The approach uses similar principles for prevention of future caries, and is intended to be a complete management solution for tooth decay.

The Hall Technique is a minimally-invasive treatment for decayed baby back (molar) teeth. Decay is sealed under preformed crowns, avoiding injections and drilling. It is one of a number of biologically orientated strategies for managing dental decay.

<span class="mw-page-title-main">Pulp capping</span> Dental restoration technique

Pulp capping is a technique used in dental restorations to prevent the dental pulp from necrosis, after being exposed, or nearly exposed during a cavity preparation, from a traumatic injury, or by a deep cavity that reaches the center of the tooth causing the pulp to die. When dental caries is removed from a tooth, all or most of the infected and softened enamel and dentin are removed. This can lead to the pulp of the tooth either being exposed or nearly exposed which causes pulpitis (inflammation). Pulpitis, in turn, can become irreversible, leading to pain and pulp necrosis, and necessitating either root canal treatment or extraction. The ultimate goal of pulp capping or stepwise caries removal is to protect a healthy dental pulp and avoid the need for root canal therapy.

<span class="mw-page-title-main">Non-carious cervical lesions</span> Dental condition

Non-carious cervical lesions (NCCLs) are a group of lesions that are characterised by a loss of hard dental tissue at the cementoenamel junction (CEJ) region at the neck of the tooth, without the action of microorganisms or inflammatory processes. These lesions vary in shape from regular depressions that look like a dome or a cup, to deep wedge-shaped defects with the apex pointing inwards. NCCLs can occur either above or below the level of the gum, at any of the surfaces of the teeth.

Atraumatic restorative treatment (ART) is a method for cleaning out tooth decay from teeth using only hand instruments and placing a filling. It does not use rotary dental instruments to prepare the tooth and can be performed in settings with no access to dental equipment. No drilling or local anaesthetic injections are required. ART is considered a conservative approach, not only because it removes the decayed tissue with hand instruments, avoiding removing more tissue necessary which preserves as much tooth structure as possible, but also because it avoids pulp irritation and minimises patient discomfort. ART can be used for small, medium and deep cavities caused by dental caries.

Topical fluorides are fluoride-containing drugs indicated in prevention and treatment of dental caries, particularly in children's primary dentitions. The dental-protecting property of topical fluoride can be attributed to multiple mechanisms of action, including the promotion of remineralization of decalcified enamel, the inhibition of the cariogenic microbial metabolism in dental plaque and the increase of tooth resistance to acid dissolution. Topical fluoride is available in a variety of dose forms, for example, toothpaste, mouth rinses, varnish and silver diamine solution. These dosage forms possess different absorption mechanisms and consist of different active ingredients. Common active ingredients include sodium fluoride, stannous fluoride, silver diamine fluoride. These ingredients account for different pharmacokinetic profiles, thereby having varied dosing regimes and therapeutic effects. A minority of individuals may experience certain adverse effects, including dermatological irritation, hypersensitivity reactions, neurotoxicity and dental fluorosis. In severe cases, fluoride overdose may lead to acute toxicity. While topical fluoride is effective in preventing dental caries, it should be used with caution in specific situations to avoid undesired side effects.

References

  1. 1 2 3 4 5 6 Rosenblatt A, Stamford TC, Niederman R (February 2009). "Silver diamine fluoride: a caries "silver-fluoride bullet"". Journal of Dental Research. 88 (2): 116–25. doi:10.1177/0022034508329406. PMID   19278981. S2CID   30730306.
  2. 1 2 3 4 5 6 Zhao IS, Gao SS, Hiraishi N, Burrow MF, Duangthip D, Mei ML, et al. (April 2018). "Mechanisms of silver diamine fluoride on arresting caries: a literature review". review. International Dental Journal. 68 (2): 67–76. doi: 10.1111/idj.12320 . hdl:10722/242975. PMC   9378923 . PMID   28542863.
  3. 1 2 3 Subbiah GK, Gopinathan NM (2018). "Is Silver Diamine Fluoride Effective in Preventing and Arresting Caries in Elderly Adults? A Systematic Review". Journal of International Society of Preventive & Community Dentistry. 8 (3): 191–199. doi: 10.4103/jispcd.JISPCD_99_18 . PMC   5985673 . PMID   29911054.
  4. Burgess JO, Vaghela PM (February 2018). "Silver Diamine Fluoride: A Successful Anticarious Solution with Limits". Advances in Dental Research. 29 (1): 131–134. doi: 10.1177/0022034517740123 . PMID   29355424.
  5. 1 2 Horst JA (February 2018). "Silver Fluoride as a Treatment for Dental Caries". Advances in Dental Research. 29 (1): 135–140. doi:10.1177/0022034517743750. PMC   6699125 . PMID   29355428.
  6. Lo EC, Duangthip (September 11, 2018). "Nonrestorative Approaches for Managing Cavitated Dentin Carious Lesions: Silver Fluoride". In Coelho S, Takeshita EM (eds.). Pediatric Restorative Dentistry. Springer. p. 143. ISBN   978-3-319-93426-6.
  7. "Off-label or unlicensed use of medicines: prescribers' responsibilities". GOV.UK. Retrieved 2020-04-09.
  8. 1 2 3 Seifo N, Cassie H, Radford JR, Innes NP (July 2019). "Silver diamine fluoride for managing carious lesions: an umbrella review". BMC Oral Health. 19 (1): 145. doi: 10.1186/s12903-019-0830-5 . PMC   6626340 . PMID   31299955.
  9. 1 2 Trieu A, Mohamed A, Lynch E (February 2019). "Silver diamine fluoride versus sodium fluoride for arresting dentine caries in children: a systematic review and meta-analysis". Scientific Reports. 9 (1): 2115. Bibcode:2019NatSR...9.2115T. doi:10.1038/s41598-019-38569-9. PMC   6376061 . PMID   30765785.
  10. 1 2 Chibinski AC, Wambier LM, Feltrin J, Loguercio AD, Wambier DS, Reis A (2017). "Silver Diamine Fluoride Has Efficacy in Controlling Caries Progression in Primary Teeth: A Systematic Review and Meta-Analysis". Caries Research. 51 (5): 527–541. doi:10.1159/000478668. PMID   28972954. S2CID   5129645.
  11. 1 2 Gao SS, Zhao IS, Hiraishi N, Duangthip D, Mei ML, Lo EC, Chu CH (October 2016). "Clinical Trials of Silver Diamine Fluoride in Arresting Caries among Children: A Systematic Review". JDR Clinical and Translational Research. 1 (3): 201–210. doi: 10.1177/2380084416661474 . hdl: 10722/234467 . PMID   30931743.
  12. Seifo N, Robertson M, MacLean J, Blain K, Grosse S, Milne R, et al. (January 2020). "The use of silver diamine fluoride (SDF) in dental practice". British Dental Journal. 228 (2): 75–81. doi:10.1038/s41415-020-1203-9. PMID   31980777. S2CID   210880141.
  13. "510(k) Premarket Notification".
  14. World Health Organization (2021). World Health Organization model list of essential medicines: 22nd list (2021). Geneva: World Health Organization. hdl: 10665/345533 . WHO/MHP/HPS/EML/2021.02.
  15. 1 2 3 4 5 6 7 8 9 Horst JA, Ellenikiotis H, Milgrom PL (January 2016). "UCSF Protocol for Caries Arrest Using Silver Diamine Fluoride: Rationale, Indications and Consent". Journal of the California Dental Association. 44 (1): 16–28. doi:10.1080/19424396.2016.12220962. PMC   4778976 . PMID   26897901.
  16. Twetman S, Dhar V (2015). "Evidence of Effectiveness of Current Therapies to Prevent and Treat Early Childhood Caries". Pediatric Dentistry. 37 (3): 246–53. PMID   26063553.
  17. 1 2 3 4 Crystal YO, Marghalani AA, Ureles SD, Wright JT, Sulyanto R, Divaris K, Fontana M, Graham L (September 2017). "Use of Silver Diamine Fluoride for Dental Caries Management in Children and Adolescents, Including Those with Special Health Care Needs". Pediatric Dentistry. 39 (5): 135–145. PMID   29070149.
  18. "Minimally Invasive Treatment for Molar Incisor Hypomineralization". Decisions in Dentistry. 6 November 2018. Retrieved 2020-04-09.
  19. 1 2 Oliveira BH, Cunha-Cruz J, Rajendra A, Niederman R (August 2018). "Controlling caries in exposed root surfaces with silver diamine fluoride: A systematic review with meta-analysis". Journal of the American Dental Association. 149 (8): 671–679.e1. doi:10.1016/j.adaj.2018.03.028. PMC   6064675 . PMID   29805039.
  20. Mei ML, Lo EC, Chu CH (February 2016). "Clinical Use of Silver Diamine Fluoride in Dental Treatment". Compendium of Continuing Education in Dentistry. 37 (2): 93–8, quiz100. PMID   26905088.
  21. Crystal YO, Niederman R (January 2019). "Evidence-Based Dentistry Update on Silver Diamine Fluoride". Dental Clinics of North America. 63 (1): 45–68. doi:10.1016/j.cden.2018.08.011. PMC   6500430 . PMID   30447792.
  22. 1 2 Savas S, Kucukyılmaz E, Celik EU, Ates M (2015). "Effects of different antibacterial agents on enamel in a biofilm caries model". primary. Journal of Oral Science. 57 (4): 367–72. doi: 10.2334/josnusd.57.367 . PMID   26666861.
  23. 1 2 Mei ML, Ito L, Cao Y, Li QL, Chu CH, Lo EC (March 2014). "The inhibitory effects of silver diamine fluorides on cysteine cathepsins". primary. Journal of Dentistry. 42 (3): 329–35. doi: 10.1016/j.jdent.2013.11.018 . PMID   24316241.
  24. Chu CH, Lo EC (June 2008). "Microhardness of dentine in primary teeth after topical fluoride applications". primary. Journal of Dentistry. 36 (6): 387–91. doi:10.1016/j.jdent.2008.02.013. hdl: 10722/67101 . PMID   18378377.
  25. Targino AG, Flores MA, dos Santos Junior VE, de Godoy Bené Bezerra F, de Luna Freire H, Galembeck A, Rosenblatt A (August 2014). "An innovative approach to treating dental decay in children. A new anti-caries agent". primary. Journal of Materials Science: Materials in Medicine. 25 (8): 2041–7. doi:10.1007/s10856-014-5221-5. PMID   24818873. S2CID   12691236.
  26. Suzuki T, Tsutsumi N, Sobue S, Suginaka H (1976). "Effect of diammine silver fluoride on plaque formation by Streptococcus mutans". primary. Japanese Journal of Oral Biology. 18 (3): 268–278. doi: 10.2330/joralbiosci1965.18.268 .
  27. Li YJ (June 1984). "[Effect of a silver ammonia fluoride solution on the prevention and inhibition of caries]". Zhonghua Kou Qiang Ke Za Zhi [Chinese Journal of Stomatology]. 19 (2): 97–100. PMID   6596183.
  28. 1 2 3 Contreras V, Toro MJ, Elías-Boneta AR, Encarnación-Burgos A (2017). "Effectiveness of silver diamine fluoride in caries prevention and arrest: a systematic literature review". secondary. General Dentistry. 65 (3): 22–29. PMC   5535266 . PMID   28475081.
  29. Llodra JC, Rodriguez A, Ferrer B, Menardia V, Ramos T, Morato M (August 2005). "Efficacy of silver diamine fluoride for caries reduction in primary teeth and first permanent molars of schoolchildren: 36-month clinical trial". primary. Journal of Dental Research. 84 (8): 721–4. doi:10.1177/154405910508400807. PMID   16040729. S2CID   26829520.
  30. Yee R, Holmgren C, Mulder J, Lama D, Walker D, van Palenstein Helderman W (July 2009). "Efficacy of silver diamine fluoride for Arresting Caries Treatment". primary. Journal of Dental Research. 88 (7): 644–7. doi:10.1177/0022034509338671. PMID   19641152. S2CID   9645591.
  31. Zhi QH, Lo EC, Lin HC (November 2012). "Randomized clinical trial on effectiveness of silver diamine fluoride and glass ionomer in arresting dentine caries in preschool children". primary. Journal of Dentistry. 40 (11): 962–7. doi:10.1016/j.jdent.2012.08.002. hdl: 10722/169164 . PMID   22892463.
  32. 1 2 3 Gao SS, Zhang S, Mei ML, Lo EC, Chu CH (February 2016). "Caries remineralisation and arresting effect in children by professionally applied fluoride treatment - a systematic review". secondary. BMC Oral Health. 16 (1): 12. doi: 10.1186/s12903-016-0171-6 . PMC   4736084 . PMID   26831727.
  33. Duangthip D, Jiang M, Chu CH, Lo EC (June 2016). "Restorative approaches to treat dentin caries in preschool children: systematic review". secondary. European Journal of Paediatric Dentistry. 17 (2): 113–21. PMID   27377109.
  34. "Chairside Guide: Silver Diamine Fluoride in the Management of Dental Caries Lesions*" (PDF). American Academy of Paediatric Dentistry. 2019–2020.
  35. Patel J, Anthonappa RP, King NM (July 2018). "Evaluation of the staining potential of silver diamine fluoride: in vitro". International Journal of Paediatric Dentistry. 28 (5): 514–522. doi:10.1111/ipd.12401. PMID   29974546. S2CID   49684575.
  36. Chu CH, Lo EC, Lin HC (November 2002). "Effectiveness of silver diamine fluoride and sodium fluoride varnish in arresting dentin caries in Chinese pre-school children". Journal of Dental Research. 81 (11): 767–70. doi:10.1177/0810767. hdl: 10722/53198 . PMID   12407092. S2CID   208257502.
  37. Milgrom P, Horst JA, Ludwig S, Rothen M, Chaffee BW, Lyalina S, et al. (January 2018). "Topical silver diamine fluoride for dental caries arrest in preschool children: A randomized controlled trial and microbiological analysis of caries associated microbes and resistance gene expression". Journal of Dentistry. 68: 72–78. doi:10.1016/j.jdent.2017.08.015. PMC   5748247 . PMID   28866468.
  38. Duangthip D, Fung MH, Wong MC, Chu CH, Lo EC (April 2018). "Adverse Effects of Silver Diamine Fluoride Treatment among Preschool Children". Journal of Dental Research. 97 (4): 395–401. doi:10.1177/0022034517746678. hdl: 10722/253468 . PMID   29237131. S2CID   4020031.
  39. Lin YS, Rothen ML, Milgrom P (July 2018). "Pharmacokinetics of Iodine and Fluoride following Application of an Anticaries Varnish in Adults". JDR Clinical and Translational Research. 3 (3): 238–245. doi:10.1177/2380084418771930. PMC   6728447 . PMID   30938600.
  40. Duangthip D, Jiang M, Chu CH, Lo EC (April 2015). "Non-surgical treatment of dentin caries in preschool children--systematic review". BMC Oral Health. 15 (1): 44. doi: 10.1186/s12903-015-0033-7 . PMC   4403709 . PMID   25888484.
  41. Hendre AD, Taylor GW, Chávez EM, Hyde S (December 2017). "A systematic review of silver diamine fluoride: Effectiveness and application in older adults". Gerodontology. 34 (4): 411–419. doi:10.1111/ger.12294. PMID   28812312. S2CID   23063651.
  42. Oliveira BH, Rajendra A, Veitz-Keenan A, Niederman R (2019). "The Effect of Silver Diamine Fluoride in Preventing Caries in the Primary Dentition: A Systematic Review and Meta-Analysis". Caries Research. 53 (1): 24–32. doi:10.1159/000488686. PMC   6292783 . PMID   29874642.
  43. Horst JA, Heima M (2019). "Prevention of Dental Caries by Silver Diamine Fluoride". Compend Contin Educ Dent. 40 (3): 158–163. PMID   30829497.
  44. Howe PR (1917). "A method of sterilizing and at the same time impregnating with a metal affected dentinal tissue". Dental Cosmos. 59: 891–904.
  45. Yamaga R, Nishino M, Yoshida S, Yokomizo I (1972). "Diammine Silver Fluoride and Its Clinical Application". J Osaka Univ Dent Sch. 12: 1–20. PMID   4514730.