Skeletal system of the horse

Last updated
Skeleton of a horse Horse anatomy.svg
Skeleton of a horse

The skeletal system of the horse is a skeletal system of a horse that has three major functions in the body. It protects vital organs, provides framework, and supports soft parts of the body. Horses typically have 205 bones. The pelvic limb typically contains 19 bones, while the thoracic limb contains 20 bones.

Contents

Functions of bones

Bones serve three major functions in the skeletal system; they act as levers, they store minerals, and they are the site of red blood cell formation. Bones can be classified into five categories

  1. Long bones: aid in locomotion, store minerals, and act as levers. They are found mainly in the limbs.
  2. Short bones: Absorb concussion. Found in joints such as the knee, hock, and fetlock.
  3. Flat bones: Enclose body cavities containing organs. The ribs are examples of flat bones.
  4. Irregular bones: Protect the central nervous system. The vertebral column consists of irregular bones.
  5. Sesamoid bones: Bones embedded within a tendon. The horse's proximal digital sesamoids are simply called the "sesamoid bones" by horsemen, his distal digital sesamoid is referred to as the navicular bone.

Ligaments and tendons hold the skeletal system together. Ligaments hold bones to bones and tendons hold bones to muscles. Synovial membranes are found in joint capsules, where they contain synovial fluid, which lubricates joints. Bones are covered by a tough membrane called periosteum, which covers the entire bone excluding areas of articulation.

Ligaments

Ligaments attach bone to bone or bone to tendon, and are vital in stabilizing joints as well as supporting structures. They are made up of fibrous material that is generally quite strong. Due to their relatively poor blood supply, ligament injuries generally take a long time to heal.

Ligaments of the upper body include:

Ligaments of the legs include:

Axial skeleton

Horse Skull Horse skull 02.jpg
Horse Skull

The axial skeleton contains the skull, vertebral column, sternum, and ribs. The sternum consists of multiple sternebrae, which fuse to form one cartilagenous mass, attached to the 8 "true" pairs of ribs, out of a total of 18.

The vertebral column usually contains 54 bones: 7 cervical vertebrae, including the atlas (C1) and axis (C2) which support and help move the skull, 18 (or rarely, 19) thoracic, [2] 5-6 lumbar, 5 sacral (which fuse together to form the sacrum), and 15-25 caudal [2] vertebrae with an average of 18. Differences in number may occur, particularly in certain breeds. For example, some, though not all, Arabians, may have 5 lumbar vertebrae, opposed to the usual 6, 17 thoracic vertebrae (and ribs) instead of 18, and 16 or 17 caudal vertebrae instead of 18. The withers of the horse are made up by the dorsal spinal processes of the thoracic vertebrae numbers 5 to 9. [3]

The skull consists of 34 bones and contains four cavities: the cranial cavity, the orbital cavity, oral, and the nasal cavity. The cranial cavity encloses and protects the brain and it supports several sense organs. The orbital cavitity surrounds and protects the eye. The oral cavity is a passageway into the respiratory and digestive systems. The nasal cavity leads into the respiratory system, and includes extensive paranasal sinuses. The nasal cavity contains turbinate bones that protect the mucous membrane that lines the cavity from warm inspired air. The skull consists of fourteen major bones

  1. Incisive bone (premaxillary): part of the upper jaw; where the incisors attach
  2. Nasal bones: cover the nasal cavity
  3. Maxillary bones: large bones that contain the roots of the molars
  4. Mandible: lower portion of the jaw; largest bone in the skull
  5. Lacrimal bones: contains the nasolacrimal duct, which carries fluid from the surface of the eye, to the nose
  6. Ethmoid bone: complex bone separating the nasal passages from the cranial vault
  7. Frontal bone: creates the forehead of the horse
  8. Parietal bones: extend from the forehead to the back of the skull
  9. Occipital bone: forms the joint between the skull and the first vertebrae of the neck (the atlas)
  10. Temporal bones: contain the eternal acoustic meatus, which transmits sound from the ear to the cochlea (eardrum)
  11. Zygomatic bones: attach to the temporal bone to form the zygomatic arch (cheek bone)
  12. Palatine bones: form the back of the hard palate
  13. Sphenoid bone: formed by fusion of the foetal basisphenoid and presphenoid bones, at the base of the skull. Can become fractured in horses that rear over backwards.
  14. Vomer: forms the top of the inside of the nasal cavity
  15. Pterygoid bones: small bones attached to the sphenoid that extend downward

Appendicular skeleton

Appendicular forelimb skeleton MbreAntChevalChauveau1980.jpg
Appendicular forelimb skeleton

The appendicular skeleton contains the fore and hindlimbs. The hindlimb attaches to the vertebral column via the pelvis, while the forelimb does not directly attach to the spine (as a horse does not have a collar bone), and is instead suspended in place by muscles and tendons. This allows great mobility in the front limb, and is partially responsible for the horse's ability to fold his legs up when jumping. Although the hindlimb supports only about 40% of the weight of the animal, it creates most of the forward movement of the horse, and is stabilized through attachments to the spine.

Important bones and joints of the forelimb

Important bones and joints of the hindlimb

Appendicular hindlimb skeleton Horse leg, bones.JPG
Appendicular hindlimb skeleton

Bones of the lower limb

Bones of the lower limb, present in both the front and hind legs, include the cannon bone (3rd metacarpal/3rd metatarsal), splint bones (2nd and 4th metacarpal/metatarsal), proximal sesamoid bones, long pastern (proximal or 1st phalanx), short pastern (middle or 2nd phalanx), coffin bone (distal or 3rd phalanx), and navicular bone (distal sesamoid). There are usually slight differences in these bones when comparing the front and the hind. The 3rd metatarsal is about 1/6 longer than the 3rd metacarpal. Similarly, the 2nd and 4th metatarsals are longer in length when compared to their front-end counterpart. In the hindlimb, the 1st phalanx is shorter and the 2nd phalanx is longer than in the frontlimb. In addition, the 2nd and 3rd phalanx are narrower in the hind limb. The angle created by these three bones in the hindleg is steeper by about 5 degrees, therefore making the pastern angle steeper behind than in front.

Skeletal system disorders

Joint disease in horses

Performance horses, like human athletes, place a high amount of stress on their bones and joints. This is especially true if the horse jumps, gallops, or performs sudden turns or changes of pace, as can be seen in racehorses, show jumpers, eventers, polo ponies, reiners, and western performance horses. A high percentage of performance horses develop arthritis, especially if they are worked intensely when young or are worked on poor footing.

Treatment of early joint disease often involves a combination of management and nutraceuticals. Intramuscular, intravenous, and intra-articular medications may be added as the disease progresses. Advanced therapies, such as Interleukin-1 Receptor Antagonist Protein (IRAP) and stem cell treatments, are available for acute cases.

Related Research Articles

<span class="mw-page-title-main">Foot</span> Anatomical structure found in vertebrates

The foot is an anatomical structure found in many vertebrates. It is the terminal portion of a limb which bears weight and allows locomotion. In many animals with feet, the foot is a separate organ at the terminal part of the leg made up of one or more segments or bones, generally including claws and/or nails.

<span class="mw-page-title-main">Sesamoid bone</span> Bone embedded within a tendon or muscle

In anatomy, a sesamoid bone is a bone embedded within a tendon or a muscle. Its name is derived from the Greek word for 'sesame seed', indicating the small size of most sesamoids. Often, these bones form in response to strain, or can be present as a normal variant. The patella is the largest sesamoid bone in the body. Sesamoids act like pulleys, providing a smooth surface for tendons to slide over, increasing the tendon's ability to transmit muscular forces.

<span class="mw-page-title-main">Cuboid bone</span> Bone of the ankle

In the human body, the cuboid bone is one of the seven tarsal bones of the foot.

<span class="mw-page-title-main">Navicular bone</span> Small bone found in the feet of most mammals

The navicular bone is a small bone found in the feet of most mammals.

Navicular syndrome, often called navicular disease, is a syndrome of lameness problems in horses. It most commonly describes an inflammation or degeneration of the navicular bone and its surrounding tissues, usually on the front feet. It can lead to significant and even disabling lameness.

<span class="mw-page-title-main">Equine conformation</span> Evaluation of a horses bone and muscle structure

Equine conformation evaluates a horse's bone structure, musculature, and its body proportions in relation to each other. Undesirable conformation can limit the ability to perform a specific task. Although there are several faults with universal disadvantages, a horse's conformation is usually judged by what its intended use may be. Thus "form to function" is one of the first set of traits considered in judging conformation. A horse with poor form for a Grand Prix show jumper could have excellent conformation for a World Champion cutting horse, or to be a champion draft horse. Every horse has good and bad points of its conformation and many horses excel even with conformation faults.

<span class="mw-page-title-main">Fetlock</span>

Fetlock is the common name in horses, large animals, and sometimes dogs for the metacarpophalangeal and metatarsophalangeal joints.

<span class="mw-page-title-main">Metacarpophalangeal joint</span> Bodily joint at the base of each finger

The metacarpophalangeal joints (MCP) are situated between the metacarpal bones and the proximal phalanges of the fingers. These joints are of the condyloid kind, formed by the reception of the rounded heads of the metacarpal bones into shallow cavities on the proximal ends of the proximal phalanges. Being condyloid, they allow the movements of flexion, extension, abduction, adduction and circumduction at the joint.

<span class="mw-page-title-main">Interphalangeal joints of the hand</span> Hinge joints between finger phalanges

The interphalangeal joints of the hand are the hinge joints between the phalanges of the fingers that provide flexion towards the palm of the hand.

<span class="mw-page-title-main">Equine anatomy</span> Descriptive scheme

Equine anatomy encompasses the gross and microscopic anatomy of horses, ponies and other equids, including donkeys, mules and zebras. While all anatomical features of equids are described in the same terms as for other animals by the International Committee on Veterinary Gross Anatomical Nomenclature in the book Nomina Anatomica Veterinaria, there are many horse-specific colloquial terms used by equestrians.

<span class="mw-page-title-main">Pastern</span> Part of the leg of a horse

The pastern is a part of the leg of a horse between the fetlock and the top of the hoof. It incorporates the long pastern bone and the short pastern bone, which are held together by two sets of paired ligaments to form the pastern joint. Anatomically homologous to the two largest bones found in the human finger, the pastern was famously mis-defined by Samuel Johnson in his dictionary as "the knee of a horse". When a lady asked Johnson how this had happened, he gave the much-quoted reply: "Ignorance, madam, pure ignorance."

<span class="mw-page-title-main">Sesamoiditis</span> Medical condition

Sesamoiditis is inflammation of the sesamoid bones.

A flexion test is a preliminary veterinary procedure performed on a horse, generally during a prepurchase or a lameness exam. The purpose is to accentuate any pain that may be associated with a joint or soft-tissue structure, allowing the practitioner to localize a lameness to a specific area, or to alert a practitioner to the presence of sub-clinical disease that may be present during a pre-purchase exam.

<span class="mw-page-title-main">Outline of human anatomy</span> Overview of and topical guide to human anatomy

The following outline is provided as an overview of and topical guide to human anatomy:

Lameness is an abnormal gait or stance of an animal that is the result of dysfunction of the locomotor system. In the horse, it is most commonly caused by pain, but can be due to neurologic or mechanical dysfunction. Lameness is a common veterinary problem in racehorses, sport horses, and pleasure horses. It is one of the most costly health problems for the equine industry, both monetarily for the cost of diagnosis and treatment, and for the cost of time off resulting in loss-of-use.

<span class="mw-page-title-main">Dynasplint Systems</span>

Dynasplint Systems, Incorporated (DSI) is a company that designs, manufactures and sells dynamic splints that are used for range of motion rehabilitation. The corporate headquarters are located in Severna Park, Maryland and it is considered a major employer in Anne Arundel County. Products are Made in the US in Stevensville, Maryland. There is a national sales force throughout the US as well as a presence in Canada and Europe.

<span class="mw-page-title-main">Limbs of the horse</span> Structures made of bones, joints, muscles, tendons, and ligaments

The limbs of the horse are structures made of dozens of bones, joints, muscles, tendons, and ligaments that support the weight of the equine body. They include two apparatuses: the suspensory apparatus, which carries much of the weight, prevents overextension of the joint and absorbs shock, and the stay apparatus, which locks major joints in the limbs, allowing horses to remain standing while relaxed or asleep. The limbs play a major part in the movement of the horse, with the legs performing the functions of absorbing impact, bearing weight, and providing thrust. In general, the majority of the weight is borne by the front legs, while the rear legs provide propulsion. The hooves are also important structures, providing support, traction and shock absorption, and containing structures that provide blood flow through the lower leg. As the horse developed as a cursorial animal, with a primary defense mechanism of running over hard ground, its legs evolved to the long, sturdy, light-weight, one-toed form seen today.

<span class="mw-page-title-main">Stay apparatus</span>

The stay apparatus is an arrangement of muscles, tendons and ligaments that work together so that an animal can remain standing with virtually no muscular effort. It is best known as the mechanism by which horses can enter a light sleep while still standing up. The effect is that an animal can distribute its weight on three limbs while resting a fourth in a flexed, non-weight bearing position. The animal can periodically shift its weight to rest a different leg and thus all limbs are able to be individually rested, reducing overall wear and tear. The relatively slim legs of certain large mammals such as horses and cows would be subject to dangerous levels of fatigue if not for the stay apparatus.

References

  1. The suspensory ligament
  2. 1 2 King, Christine, BVSc, MACVSc, and Mansmann, Richard, VMD, PhD. "Equine Lameness." Equine Research, Inc. 1997.
  3. Riegal, Ronald J. DVM, and Susan E. Hakola RN. Illustrated Atlas of Clinical Equine Anatomy and Common Disorders of the Horse Vol. II. Equistar Publication, Limited. Marysville, OH. Copyright 2000.