Skyflash

Last updated

Skyflash
Za254.jpg
Prototype Panavia Tornado ADV aircraft with semi-recessed Skyflash missiles
TypeMedium-range air-to-air missile
Place of originUnited Kingdom
Service history
In service1978–2006
Production history
Designer Hawker Siddeley, Marconi Space & Defence Systems
Manufacturer BAe Dynamics
Unit cost£150,000 per missile
Specifications
Mass193 kg (425 lb)
Length3.68 m (12 ft 1 in)
Diameter203 mm
Warhead39.5 kg (87 lb)

EngineRocketdyne solid propellant rocket motor
Wingspan1.02 m (3 ft 6 in)
Operational
range
45 km (28 mi)
Maximum speed Mach 4
Guidance
system
Marconi inverse monopulse semi-active radar homing

The Skyflash, or Sky Flash in marketing material, was a medium-range semi-active radar homing air-to-air missile derived from the US AIM-7 Sparrow missile and carried by Royal Air Force McDonnell Douglas F-4 Phantoms and Tornado F3s, Italian Aeronautica Militare and Royal Saudi Air Force Tornados and Swedish Flygvapnet Saab Viggens.

Contents

Skyflash replaced the original Raytheon conical scanning seeker with a Marconi inverse monopulse seeker that worked with the F-4's radar. Monopulse seekers are more accurate, less susceptible to jamming, and able to easily pick out targets at low altitudes. It offered significantly better performance than the original seeker, allowing British Aerospace to dispense with upgrades to the warhead that were carried out in the US to address poor accuracy.

Skyflash was tested in the US, but after trials against experimental monopulse seekers from Raytheon, the United States Navy elected to order a different monopulse-equipped version of the Sparrow, the AIM-7M. Both Skyflash and AIM-7M were later replaced by the more capable AMRAAM.

History

Swedish Air Force JA37 Viggen with a pair of underwing Skyflash missiles Saab 37 Viggen 37301 001.jpg
Swedish Air Force JA37 Viggen with a pair of underwing Skyflash missiles

Skyflash came out of a British plan to develop an inverse monopulse seeker for the Sparrow AIM-7E-2 by General Electric Company (GEC) and the Royal Aircraft Establishment (RAE) at the end of the 1960s. Having shown this was feasible, Air Staff Requirement 1219 was issued in January 1972, [1] with the project code XJ.521. The contractors were Hawker Siddeley and Marconi Space & Defence Systems (the renamed GEC guided weapons division) at Stanmore. [2] Major changes from the Sparrow were the addition of a Marconi semi-active inverse monopulse radar seeker, improved electronics, adapted control surfaces and a Thorn EMI active radar fuze. The rocket motors used were the Bristol Aerojet Mk 52 mod 2 and the Rocketdyne Mk 38 mod 4 rocket motor; the latest is the Aerojet Hoopoe.

Tests of the resulting missile showed it could function successfully in hostile electronic countermeasures (ECM) environments and could engage targets under a wide variety of conditions. It could be launched from as low as 100 m to attack a high-altitude target or launched at high level to engage a target flying as low as 75 m. In testing, it repeatedly intercepted target drones at 1,000 ft altitude, the minimum altitude that the tracking cameras could be set to. [3]

The missile entered service on the F-4 Phantom II in 1978 as what was later called the 3000 Pre TEMP series (Tornado Embodied Modification Package). In 1985, these aircraft were replaced with the Panavia Tornado ADV. Both the Phantom and the Tornado carried the Skyflash in semi-recessed wells on the aircraft's underbelly to reduce drag. In the Tornado, however, Frazer-Nash hydraulic trapezes projected the missile out into the slipstream prior to motor ignition. This widened the missile's firing envelope by ensuring that the launch was not affected by turbulence from the fuselage. Skyflash was therefore converted to the 5000 TEMP series to incorporate the Frazer-Nash recesses in the body of the missile, Launch Attitude Control electronics in the autopilot section and improved wing surfaces. The Tornado-Skyflash combination became operational in 1987 with the formation of the first Tornado F.3 squadron. [4]

From 1988 a further modification (6000 series) nicknamed "SuperTEMP" included the Hoopoe rocket motor to change the missile's flight profile from boost-and-glide (with a 3-second burn) to boost-sustain-glide (3 second boost - 4 second sustain), increasing its range from 17nm to 18.4nm at a height of 30,000ft and at a height 5,000ft the range increase was more substantial, raising from 14nm to 16nm. The maximum flight time was also raised from 40 to 50-60 seconds. [5]

In RAF service the missiles were usually carried in conjunction with four short-range air-to-air missiles, either AIM-9 Sidewinders or ASRAAMs.

A version with an active Thomson CSF-developed radar seeker and inertial mid-course update capability, Skyflash Mk 2 (called Active Skyflash), was proposed for both the RAF and Sweden. [6] British interest ended with the 1981 Defence Review; [7] British Aerospace (BAe) kept the proposal around until the early '90s but there were no buyers.

Further advanced Sky Flash derivatives were studied under the code name S225X, [8] and a ramjet-powered version, the S225XR became the basis for the MBDA Meteor. [6]

In 1996 the RAF announced the launch of the Capability Sustainment Programme which called for, among other things, the replacement of the Skyflash with the AIM-120 AMRAAM. AMRAAM incorporates an active seeker with a strapdown inertial reference unit and computer system, giving it fire-and-forget capability. The first Tornado ADV F.3 with limited AMRAAM capability entered service in 1998. In 2002, a further upgrade enabled full AMRAAM capability. [6] The first mention of AMRAAM as a replacement for Skyflash dates back to 1986. [9]

Former operators

Flag of Italy.svg  Italy
Flag of Saudi Arabia.svg  Saudi Arabia
Flag of Sweden.svg  Sweden
Flag of the United Kingdom.svg  United Kingdom

Related Research Articles

<span class="mw-page-title-main">AIM-7 Sparrow</span> Medium-range, semi-active radar homing air-to-air missile

The AIM-7 Sparrow is an American, medium-range semi-active radar homing air-to-air missile operated by the United States Air Force, United States Navy, and United States Marine Corps, as well as other various air forces and navies. Sparrow and its derivatives were the West's principal beyond visual range (BVR) air-to-air missile from the late 1950s until the 1990s. It remains in service, although it is being phased out in aviation applications in favor of the more advanced AIM-120 AMRAAM.

The AIM-120 Advanced Medium-Range Air-to-Air Missile, or AMRAAM, is an American beyond-visual-range air-to-air missile capable of all-weather day-and-night operations. It is 7 in (18 cm) in diameter, and employs active transmit-receive radar guidance instead of semi-active receive-only radar guidance. It is a fire-and-forget weapon, unlike the previous generation Sparrow missiles which needed guidance from the firing aircraft. When an AMRAAM missile is launched, NATO pilots use the brevity code Fox Three.

The AIM-54 Phoenix is an American radar-guided, long-range air-to-air missile (AAM), carried in clusters of up to six missiles on the Grumman F-14 Tomcat, its only operational launch platform.

<span class="mw-page-title-main">Panavia Tornado ADV</span> Series of interceptor aircraft

The Panavia Tornado Air Defence Variant (ADV) was a long-range, twin-engine swing-wing interceptor aircraft developed by the European Panavia Aircraft GmbH consortium. It was a specialised derivative of the multirole Panavia Tornado.

<span class="mw-page-title-main">ASRAAM</span> Short-range air-to-air missile

The Advanced Short Range Air-to-Air Missile (ASRAAM), also known by its United States designation AIM-132, is an imaging infrared homing air-to-air missile, produced by MBDA UK, that is designed for close-range combat. It is in service in the Royal Air Force (RAF), replacing the AIM-9 Sidewinder. ASRAAM is designed to allow the pilot to fire and then turn away before the opposing aircraft can close for a shot. It flies at well over Mach 3 to ranges in excess of 25 kilometres (16 mi). It retains a 50 g manoeuvrability provided by body lift technology coupled with tail control.

<span class="mw-page-title-main">Meteor (missile)</span> Beyond visual range air-to-air missile

The Meteor is a European active radar guided beyond-visual-range air-to-air missile (BVRAAM) developed and manufactured by MBDA. It offers a multi-shot capability, and has the ability to engage highly maneuverable targets, such as jets, and small targets such as UAVs and cruise missiles in a heavy electronic countermeasures (ECM) environment with a range far in excess of 100 kilometres (54 nmi).

<span class="mw-page-title-main">Air-to-air missile</span> Missile fired from the air at airborne targets

An air-to-air missile (AAM) is a missile fired from an aircraft for the purpose of destroying another aircraft. AAMs are typically powered by one or more rocket motors, usually solid fueled but sometimes liquid fueled. Ramjet engines, as used on the Meteor, are emerging as propulsion that will enable future medium-range missiles to maintain higher average speed across their engagement envelope.

Semi-active radar homing (SARH) is a common type of missile guidance system, perhaps the most common type for longer-range air-to-air and surface-to-air missile systems. The name refers to the fact that the missile itself is only a passive detector of a radar signal—provided by an external ("offboard") source—as it reflects off the target. Semi-active missile systems use bistatic continuous-wave radar.

<span class="mw-page-title-main">RIM-7 Sea Sparrow</span> US ship-borne short-range air defence missile system

RIM-7 Sea Sparrow is a U.S. ship-borne short-range anti-aircraft and anti-missile weapon system, primarily intended for defense against anti-ship missiles. The system was developed in the early 1960s from the AIM-7 Sparrow air-to-air missile as a lightweight "point-defense" weapon that could be retrofitted to existing ships as quickly as possible, often in place of existing gun-based anti-aircraft weapons. In this incarnation, it was a very simple system guided by a manually aimed radar illuminator.

<span class="mw-page-title-main">R-77</span> Medium-range, active radar homing air-to-air BVR missile

The Vympel NPO R-77 missile is a Russian active radar homing beyond-visual-range air-to-air missile. It is also known by its export designation RVV-AE. It is the Russian counterpart to the American AIM-120 AMRAAM missile.

<span class="mw-page-title-main">RIM-162 ESSM</span> Medium-range surface-to-air missile

The RIM-162 Evolved SeaSparrow Missile (ESSM) is a development of the RIM-7 Sea Sparrow missile used to protect ships from attacking missiles and aircraft. ESSM is designed to counter supersonic maneuvering anti-ship missiles. ESSM also has the ability to be "quad-packed" in the Mark 41 Vertical Launch System, allowing up to four ESSMs to be carried in a single cell.

<span class="mw-page-title-main">AIM-47 Falcon</span> American high-performance air-to-air missile

The Hughes AIM-47 Falcon, originally GAR-9, was a very long-range high-performance air-to-air missile that shared the basic design of the earlier AIM-4 Falcon. It was developed in 1958 along with the new Hughes AN/ASG-18 radar fire-control system intended to arm the Mach 3 XF-108 Rapier interceptor aircraft and, after that jet's cancellation, the YF-12A(whose production was itself cancelled after only 3 vehicles). It was never used operationally, but was a direct predecessor of the AIM-54 Phoenix used on the Grumman F-14 Tomcat.

<span class="mw-page-title-main">R-40 (missile)</span> Air-to-air missile developed by the Soviet Union

The BisnovatR-40 is a long-range air-to-air missile developed in the 1960s by the Soviet Union specifically for the MiG-25P interceptor, but can also be carried by the later MiG-31. It is the largest air-to-air missile in the world ever to go into production.

A beyond-visual-range missile (BVR) is an air-to-air missile (BVRAAM) that is capable of engaging at ranges of 20 nmi (37 km) or beyond. This range has been achieved using dual pulse rocket motors or booster rocket motor and ramjet sustainer motor.

<span class="mw-page-title-main">AIM-152 AAAM</span> American air-to-air missile program

The AIM-152 AAAM was a long-range air-to-air missile developed by the United States. The AIM-152 was intended to serve as the successor to the AIM-54 Phoenix. The program went through a protracted development stage but was never adopted by the United States Navy, due to the ending of the Cold War and the reduction in threat of its perceived primary target, Soviet supersonic bombers. Development was cancelled in 1992.

<span class="mw-page-title-main">Aspide</span> Medium range Surface to air missile/ Air to air missile

Aspide is an Italian medium range air-to-air and surface-to-air missile produced by Selenia. It is provided with semi-active radar homing seeker. It is very similar to the American AIM-7 Sparrow, using the same airframe, but uses an inverse monopulse seeker that is far more accurate and much less susceptible to ECM than the original conical scanning version.

<span class="mw-page-title-main">Have Dash</span> Air-to-air missile

Have Dash was a program conducted by the United States Air Force for the development of a stealthy air-to-air missile. Although the Have Dash II missile appears to have been flight tested, the results of the project remain classified and no production is believed to have been undertaken.

An inverse monopulse seeker is a type of semi-active radar homing that offers significant advantages over earlier designs. The system requires electronics that can compare three signals at once, so this design did not become practically possible until the early 1970s. One of the first such examples was the Soviet Union R-40 air-to-air missiles used in MiG-25P introduced in service in 1970 and RAF's Skyflash missile introduced in 1978, an adaptation of the AIM-7 Sparrow that replaced the original Raytheon seeker with a monopulse model from Marconi, followed by a very similar conversion by Selenia for the Italian Aspide. The USAF adopted similar technology in the M model of the AIM-7 Sparrow, and such designs are universal in semi-active designs today.

<span class="mw-page-title-main">GÖKTUĞ</span> Turkish air-to-air missile program

GÖKTUĞ is a Turkish program by TÜBİTAK-SAGE to develop four variants of air-to-air missiles that are to be launched from F-16s as well as future Turkish indigenous Hürjets and TF-Xs. These missiles are going to be Turkey's first indigenous air-to-air missiles. Bozdoğan (Merlin) are short-range infrared homing and Gökdoğan (Peregrine) are beyond visual range active radar homing missiles. Both missiles were successfully flight-tested in 2018. The missiles are also planned to be integrated on Bayraktar AKINCI and Bayraktar Kızılelma, indigenously developed Turkish UCAVs.

References

Notes

  1. Gibson 2007, p. 45
  2. Gibson 2007, p. 46
  3. Richardson, Doug (9 April 1977). "Sky Flash Countdown". Flight International. pp. 894–896.
  4. "Flight 1 October 1988".
  5. Tornado F.3 Tactics Manual (Oct 1987)
  6. 1 2 3 Gibson 2007, p. 47
  7. "Flight 1 August 1981".
  8. "Flight 30 March 1993".
  9. "Flight 8 February 1986".

Bibliography

See also