Sodium trichloroacetate

Last updated
Sodium trichloroacetate
Natriumtrichlooracetaat.png
Names
Preferred IUPAC name
Sodium trichloroacetate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.010.437 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 211-479-2
PubChem CID
RTECS number
  • AJ9100000
UNII
  • Key: SAQSTQBVENFSKT-UHFFFAOYSA-M
  • InChI=1S/C2HCl3O2.Na/c3-2(4,5)1(6)7;/h(H,6,7);/q;+1/p-1
  • C(C(=O)[O-])(Cl)(Cl)Cl.[Na+]
Properties
C2Cl3NaO2
Molar mass 185.36 g·mol−1
AppearanceWhite powder
Density ~1.5 g/mL−1
Melting point 200 °C (392 °F; 473 K)
Boiling point Decomposes
55 g / 100 ml
Solubility Soluble in methanol and ethanol, slightly soluble in acetone, not soluble in ethers and hydrocarbons
Acidity (pKa)0.7 (conjugate acid)
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Corrosive
GHS labelling:
GHS-pictogram-exclam.svg GHS-pictogram-pollu.svg
Warning
H335, H410
P261, P271, P273, P304+P340, P312, P391, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
3
1
1
Flash point Non-flammable
Non-flammable
Related compounds
Other anions
Sodium trifluoroacetate
Other cations
Trichloroacetic acid
Related compounds
Sodium chloroacetate
Sodium acetate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Sodium trichloroacetate is a chemical compound with a formula of CCl3CO2Na. It is used to increase sensitivity and precision during transcript mapping. [1] It was previously used as an herbicide starting in the 1950s but regulators removed it from the market in the late 1980s and early 1990s. [2] [3] [4] [5]

Contents

Preparation

Sodium trichloroacetate is made by reaction trichloroacetic acid with sodium hydroxide:

CCl3CO2H + NaOH → CCl3CO2Na + H2O

Reactions

Basicity

Sodium trichloroacetate is a weaker base than sodium acetate because of the electron-withdrawing nature of the trichloromethyl group. Sodium trifluoroacetate is likewise a weaker base. However, it can easily be protonated in the presence of suitably strong acids:

CCl3CO2 + H2SO4 → CCl3CO2H + HSO4

Trichloromethyl-anion precursor

This reagent is useful for introducing the trichloromethyl group into other molecules. Decarboxylation produces the trichloromethyl anion, which is a sufficiently strong nucleophile to attack various carbonyl functional groups, such as aldehydes, carboxylic acid anhydrides, [6] ketones (making a precursor for the Jocic–Reeve reaction), and acyl halides.

See also

Related Research Articles

<span class="mw-page-title-main">Acid</span> Chemical compound giving a proton or accepting an electron pair

An acid is a molecule or ion capable of either donating a proton (i.e. hydrogen ion, H+), known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid.

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO2H, sometimes as R−C(O)OH with R referring to an organyl group, or hydrogen, or other groups. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

<span class="mw-page-title-main">Citric acid</span> Weak organic acid

Citric acid is an organic compound with the formula HOC(CO2H)(CH2CO2H)2. It is a colorless weak organic acid. It occurs naturally in citrus fruits. In biochemistry, it is an intermediate in the citric acid cycle, which occurs in the metabolism of all aerobic organisms.

<span class="mw-page-title-main">Base (chemistry)</span> Type of chemical substance

In chemistry, there are three definitions in common use of the word "base": Arrhenius bases, Brønsted bases, and Lewis bases. All definitions agree that bases are substances that react with acids, as originally proposed by G.-F. Rouelle in the mid-18th century.

<span class="mw-page-title-main">Coomassie brilliant blue</span> Chemical compound

Coomassie brilliant blue is the name of two similar triphenylmethane dyes that were developed for use in the textile industry but are now commonly used for staining proteins in analytical biochemistry. Coomassie brilliant blue G-250 differs from Coomassie brilliant blue R-250 by the addition of two methyl groups. The name "Coomassie" is a registered trademark of Imperial Chemical Industries.

<span class="mw-page-title-main">Thiocyanate</span> Ion (S=C=N, charge –1)

Thiocyanates are salts containing the thiocyanate anion [SCN]. [SCN] is the conjugate base of thiocyanic acid. Common salts include the colourless salts potassium thiocyanate and sodium thiocyanate. Mercury(II) thiocyanate was formerly used in pyrotechnics.

<span class="mw-page-title-main">Trichloroacetic acid</span> Chemical compound

Trichloroacetic acid is an analogue of acetic acid in which the three hydrogen atoms of the methyl group have all been replaced by chlorine atoms. Salts and esters of trichloroacetic acid are called trichloroacetates.

<span class="mw-page-title-main">Methyl acetate</span> Chemical compound

Methyl acetate, also known as MeOAc, acetic acid methyl ester or methyl ethanoate, is a carboxylate ester with the formula CH3COOCH3. It is a flammable liquid with a characteristically pleasant smell reminiscent of some glues and nail polish removers. Methyl acetate is occasionally used as a solvent, being weakly polar and lipophilic, but its close relative ethyl acetate is a more common solvent being less toxic and less soluble in water. Methyl acetate has a solubility of 25% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or aqueous acids. Methyl acetate is not regulated as a volatile organic compound in the USA.

<span class="mw-page-title-main">Acetic anhydride</span> Organic compound with formula (CH₃CO)₂O

Acetic anhydride, or ethanoic anhydride, is the chemical compound with the formula (CH3CO)2O. Commonly abbreviated Ac2O, it is the simplest isolable anhydride of a carboxylic acid and is widely used as a reagent in organic synthesis. It is a colorless liquid that smells strongly of acetic acid, which is formed by its reaction with moisture in the air.

<span class="mw-page-title-main">Thermal decomposition</span> Chemical decomposition caused by heat

Thermal decomposition, or thermolysis, is a chemical decomposition of a substance caused by heat. The decomposition temperature of a substance is the temperature at which the substance chemically decomposes. The reaction is usually endothermic as heat is required to break chemical bonds in the compound undergoing decomposition. If decomposition is sufficiently exothermic, a positive feedback loop is created producing thermal runaway and possibly an explosion or other chemical reaction. Thermal decomposition is a chemical reaction where heat is a reactant. Since heat is a reactant, these reactions are endothermic meaning that the reaction requires thermal energy to break the chemical bonds in the molecule.

<span class="mw-page-title-main">Maleic anhydride</span> Chemical compound

Maleic anhydride is an organic compound with the formula C2H2(CO)2O. It is the acid anhydride of maleic acid. It is a colorless or white solid with an acrid odor. It is produced industrially on a large scale for applications in coatings and polymers.

<span class="mw-page-title-main">Carbonyldiimidazole</span> Chemical compound

1,1'-Carbonyldiimidazole (CDI) is an organic compound with the molecular formula (C3H3N2)2CO. It is a white crystalline solid. It is often used for the coupling of amino acids for peptide synthesis and as a reagent in organic synthesis.

<span class="mw-page-title-main">Trifluoroacetic acid</span> One of the lightest perfluoro compounds

Trifluoroacetic acid (TFA) is a synthetic organofluorine compound with the chemical formula CF3CO2H. It is a haloacetic acid, with all three of the acetyl group's hydrogen atoms replaced by fluorine atoms. It is a colorless liquid with a vinegar-like odor. TFA is a stronger acid than acetic acid, having an acid ionisation constant, Ka, that is approximately 34,000 times higher, as the highly electronegative fluorine atoms and consequent electron-withdrawing nature of the trifluoromethyl group weakens the oxygen-hydrogen bond (allowing for greater acidity) and stabilises the anionic conjugate base. TFA is commonly used in organic chemistry for various purposes.

<span class="mw-page-title-main">Bicinchoninic acid assay</span> Method to determine protein concentration

The bicinchoninic acid assay, also known as the Smith assay, after its inventor, Paul K. Smith at the Pierce Chemical Company, now part of Thermo Fisher Scientific, is a biochemical assay for determining the total concentration of protein in a solution, similar to Lowry protein assay, Bradford protein assay or biuret reagent. The total protein concentration is exhibited by a color change of the sample solution from blue to purple in proportion to protein concentration, which can then be measured using colorimetric techniques. The BCA assay was patented by Pierce Chemical Company in 1989 & the patent expired in 2006.

Cyanogen bromide is the inorganic compound with the formula (CN)Br or BrCN. It is a colorless solid that is widely used to modify biopolymers, fragment proteins and peptides, and synthesize other compounds. The compound is classified as a pseudohalogen.

Di-<i>tert</i>-butyl dicarbonate Chemical compound

Di-tert-butyl dicarbonate is a reagent widely used in organic synthesis. Since this compound can be regarded formally as the acid anhydride derived from a tert-butoxycarbonyl (Boc) group, it is commonly referred to as Boc anhydride. This pyrocarbonate reacts with amines to give N-tert-butoxycarbonyl or so-called Boc derivatives. These carbamate derivatives do not behave as amines, which allows certain subsequent transformations to occur that would be incompatible with the amine functional group. The Boc group can later be removed from the amine using moderately strong acids. Thus, Boc serves as a protective group, for instance in solid phase peptide synthesis. Boc-protected amines are unreactive to most bases and nucleophiles, allowing for the use of the fluorenylmethyloxycarbonyl group (Fmoc) as an orthogonal protecting group.

<span class="mw-page-title-main">Bicinchoninic acid</span> Chemical compound

Bicinchoninic acid or BCA is a weak acid composed of two carboxylated quinoline rings. It is an organic compound with the formula (C9H5NCO2H)2. The molecule consists of a pair of quinoline rings, each bearing a carboxylic acid group. Its sodium salt forms a purple complex with cuprous ions.

The proton affinity of an anion or of a neutral atom or molecule is the negative of the enthalpy change in the reaction between the chemical species concerned and a proton in the gas phase:

<span class="mw-page-title-main">Acetic acid</span> Colorless and faint organic acid found in vinegar

Acetic acid, systematically named ethanoic acid, is an acidic, colourless liquid and organic compound with the chemical formula CH3COOH. Vinegar is at least 4% acetic acid by volume, making acetic acid the main component of vinegar apart from water. It has been used, as a component of vinegar, throughout history from at least the third century BC.

<span class="mw-page-title-main">Sodium trifluoroacetate</span> Chemical compound

Sodium trifluoroacetate is a chemical compound with a formula of CF3CO2Na. It is the sodium salt of trifluoroacetic acid. It is used as a source of trifluoromethylations.

References

  1. Murray, M. G. (1986). "Use of sodium trichloroacetate and mung bean nuclease to increase sensitivity and precision during transcript mapping". Analytical Biochemistry. 158 (1): 165–170. doi:10.1016/0003-2697(86)90605-6. ISSN   0003-2697. PMID   2432801.
  2. TCA-sodium in the Pesticide Properties DataBase (PPDB), accessed June 20, 2014
  3. G. S. Rai and C. L. Hamner Persistence of Sodium Trichloroacetate in Different Soil Types Weeds 2(4) Oct. 1953: 271-279
  4. OECD Trichloroacetic Acid CAS N°: 76-03-9 Archived 2016-03-04 at the Wayback Machine Accessed June 20, 2014
  5. EPA December 1991. trichloroacetic acid (TCA) EPA Cancellation 12/91 Accessed June 20, 2014
  6. Winston, Anthony; Bederka, John P. M.; Isner, William G.; Juliano, Peter C.; Sharp, John C. (1965). "Trichloromethylation of Anhydrides. Ring—Chain Tautomerism". J. Org. Chem. 30 (8): 2784–2787. doi:10.1021/jo01019a068.