Streptomyces lucensis

Last updated

Streptomyces lucensis
Scientific classification Red Pencil Icon.png
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Streptomycetales
Family: Streptomycetaceae
Genus: Streptomyces
Species:
S. lucensis
Binomial name
Streptomyces lucensis
Arcamone et al. 1957 [1]
Type strain
1163 FI, AS 4.1855, AS 4.2004, ATCC 17804, ATCC 25468, BCRC 15141, CBS 701.69, CCRC 15141, CGMCC 4.1855, CGMCC 4.2004, DSM 40317, IFO 13056, IMRU 3783, ISP 5317, JCM 4490, KCC S-0490, KCCS-0490, LMG 20065, NBRC 13056, NCIMB 12679, NRRL B-16066, NRRL B-5626, NRRL B-B-16066, NRRL-ISP 5317, RIA 1248, VKM Ac-1737, Waksman 3783

Streptomyces lucensis is a bacterium species from the genus of Streptomyces which has been isolated from soil. [1] [2] Streptomyces lucensis produces lucensomycin A, lucensomycin B, lucensomycin D, lucensomycin E, lucensomycin F and lucensomycin G. [2] [3] [4] [5]

Contents

See also

Related Research Articles

<span class="mw-page-title-main">Neomycin</span> Type of antibiotic

Neomycin is an aminoglycoside antibiotic that displays bactericidal activity against gram-negative aerobic bacilli and some anaerobic bacilli where resistance has not yet arisen. It is generally not effective against gram-positive bacilli and anaerobic gram-negative bacilli. Neomycin comes in oral and topical formulations, including creams, ointments, and eyedrops. Neomycin belongs to the aminoglycoside class of antibiotics that contain two or more amino sugars connected by glycosidic bonds.

<i>Streptomyces</i> Genus of bacteria

Streptomyces is the largest genus of Actinomycetota and the type genus of the family Streptomycetaceae. Over 500 species of Streptomyces bacteria have been described. As with the other Actinomycetota, streptomycetes are gram-positive, and have genomes with high GC content. Found predominantly in soil and decaying vegetation, most streptomycetes produce spores, and are noted for their distinct "earthy" odor that results from production of a volatile metabolite, geosmin.

<span class="mw-page-title-main">Natural product</span> Chemical compound or substance produced by a living organism, found in nature

A natural product is a natural compound or substance produced by a living organism—that is, found in nature. In the broadest sense, natural products include any substance produced by life. Natural products can also be prepared by chemical synthesis and have played a central role in the development of the field of organic chemistry by providing challenging synthetic targets. The term natural product has also been extended for commercial purposes to refer to cosmetics, dietary supplements, and foods produced from natural sources without added artificial ingredients.

<span class="mw-page-title-main">Platensimycin</span> Chemical compound

Platensimycin, a metabolite of Streptomyces platensis, is an antibiotic, which act by blocking enzymes.

<span class="mw-page-title-main">Beta-ketoacyl-ACP synthase III</span>

In enzymology, a β-ketoacyl-[acyl-carrier-protein] synthase III (EC 2.3.1.180) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">HMGB3</span> Protein-coding gene in the species Homo sapiens

High-mobility group protein B3 is a protein that in humans is encoded by the HMGB3 gene.

<span class="mw-page-title-main">Zaragozic acid</span> Chemical compound

Zaragozic acids are a family of natural products produced by fungi. The first characterized zaragozic acids, A, B, and C were isolated from an unidentified sterile fungal culture, Sporormiella intermedia, and L. elatius, respectively. just outside the European city Zaragoza, Spain on the Jalón river. This family of natural products possesses a unique 4,8-dioxabicyclo[3.2.1]octane core, and vary in their 1-alkyl and their 6-acyl side chains.

<span class="mw-page-title-main">Hodgkinsine</span> Chemical compound

Hodgkinsine is an alkaloid found in plants of the genus Psychotria, particularly Psychotria colorata, although it is also found in Psychotria lyciiflora and probably other species in this family,

Bohemic acid is a mixture of chemical compounds which is obtained through fermentation by actinobacteria species in the genus Actinosporangium (Actinoplanaceae). The name honors the Puccini opera La Bohème and many individual components of the acid carry the names of characters from La Bohème. Most of those components are antitumor agents and anthracycline antibiotics active against Gram-positive bacteria.

<span class="mw-page-title-main">Fellutamide</span>

Fellutamides are tripeptide derivatives from Penicillium fellutanum and other fungi. They are potent proteasome inhibitor that stimulates nerve growth factor synthesis in vitro.

The Center for Pharmaceutical Research and Innovation (CPRI) is a University of Kentucky-based research center established by the University of Kentucky College of Pharmacy in 2012 to facilitate academic translational research and drug discovery/drug development. The UK CPRI specializes in natural product-based drug discovery from microbes found within unique environments including underground and surface coal mines, acid mine drainage and mine reclamation sites, thermal vents associated with underground coal mine fires and deep-well drilling for carbon sequestration. CPRI also provides core support for medicinal chemistry, assay development and screening, rational drug design, computational chemistry, and ADMET. The Center collaborates with investigators focused on drug discovery or development research in the areas of cancer, drug and alcohol addiction, cardiovascular disease, infectious disease, regenerative medicine and neurodegenerative disease.

Streptomyces isolates have yielded the majority of human, animal, and agricultural antibiotics, as well as a number of fundamental chemotherapy medicines. Streptomyces is the largest antibiotic-producing genus of Actinomycetota, producing chemotherapy, antibacterial, antifungal, antiparasitic drugs, and immunosuppressants. Streptomyces isolates are typically initiated with the aerial hyphal formation from the mycelium.

Penicillium chermesinum is an anamorph fungus species of the genus of Penicillium which was isolated from soil from Nova Scotia in Canada.Penicillium chermesinum produces plastatin, luteosporin, xanthomegnin, azaphilones, p-terphenyls and costaclavine.

Streptomyces rochei is a bacterium species from the genus of Streptomyces which has been isolated from soil in Russia. Streptomyces rochei produces borrelidin, butyrolactol A, butyrolactol B, uricase and streptothricin. Streptomyces rochei has antifungal activity against Fusarium oxysporum f.sp. lycopersici and Aspergillus fumigatus. Streptomyces rochei produces moenomycin and bambermycin. Streptomyces rochei produces amicetin A, amicetin B, amicetin C and streptolin. Streptomyces rochei produces endo-β-N-acetylglucosaminidase mithramycin, amicetin, bamicetin, and plicacetin.

Embleya scabrispora is a bacterium species from the genus Embleya which has been isolated from soil from Japan. Embleya scabrispora produces the antibiotic hitachimycin.

Streptomyces violascens is a bacterium species from the genus of Streptomyces which has been isolated from soil. Streptomyces violascens produces violapyrone A – G, L-glutamate oxidase and albaflavenoid.

<span class="mw-page-title-main">Jadomycin</span> Chemical compound

A jadomycin is a natural product produced by Streptomyces venezuelae ISP5230 (ATCC10712), the organism which is most well known for making the antibiotic chloramphenicol. The name jadomycin is applied to a family of related angucyclines which are distinguished by the E ring, which is derived from an amino acid. The amino acid incorporation which forms the E-ring is a chemical reaction, rather than enzymatic, an uncommon occurrence in biosynthesis. As such a number of jadomycins incorporating different amino acids have been discovered. Jadomycin A was the first compound of this family to be isolated and constitutes the angucylic backbone with L-isoleucine incorporated into the E-ring. A related analog, jadomycin B, is modified by glycosylation with a 2,6-dideoxy sugar, L-digitoxose. Jadomycins have cytotoxic and antibacterial properties.

Fostriecin is a type I polyketide synthase (PKS) derived natural product, originally isolated from the soil bacterium Streptomyces pulveraceus. It belongs to a class of natural products which characteristically contain a phosphate ester, an α,β-unsaturated lactam and a conjugated linear diene or triene chain produced by Streptomyces. This class includes structurally related compounds cytostatin and phoslactomycin. Fostriecin is a known potent and selective inhibitor of protein serine/threonine phosphatases, as well as DNA topoisomerase II. Due to its activity against protein phosphatases PP2A and PP4 which play a vital role in cell growth, cell division, and signal transduction, fostriecin was looked into for its antitumor activity in vivo and showed in vitro activity against leukemia, lung cancer, breast cancer, and ovarian cancer. This activity is thought to be due to PP2A's assumed role in regulating apoptosis of cells by activating cytotoxic T-lymphocytes and natural killer cells involved in tumor surveillance, along with human immunodeficiency virus-1 (HIV-1) transcription and replication.

Lynn L. Silver is an American born scientist best known for her contributions to the field of antibacterial discovery and development. With over 30 years of experience in the antibacterial discovery field and over 70 peer reviewed publications, Silver provides insight and advice to the research community on global advisory panels, international collaborations for addressing antibiotic resistance issues. Silver has published several highly cited reviews in the field of antibacterial discovery.

<span class="mw-page-title-main">Enterocin</span> Chemical compound

Enterocin and its derivatives are bacteriocins synthesized by the lactic acid bacteria, Enterococcus. This class of polyketide antibiotics are effective against foodborne pathogens including L. monocytogenes, Listeria, and Bacillus. Due to its proteolytic degradability in the gastrointestinal tract, enterocin is used for controlling foodborne pathogens via human consumption.

References

  1. 1 2 LPSN bacterio.net
  2. 1 2 Deutsche Sammlung von Mikroorganismen und Zellkulturen
  3. Singh, SB; Zink, DL; Dorso, K; Motyl, M; Salazar, O; Basilio, A; Vicente, F; Byrne, KM; Ha, S; Genilloud, O (27 March 2009). "Isolation, structure, and antibacterial activities of lucensimycins D-G, discovered from Streptomyces lucensis MA7349 using an antisense strategy". Journal of Natural Products. 72 (3): 345–52. doi:10.1021/np8005106. PMID   19115838.
  4. Singh, SB; Zink, DL; Huber, J; Genilloud, O; Salazar, O; Diez, MT; Basilio, A; Vicente, F; Byrne, KM (23 November 2006). "Discovery of lucensimycins A and B from Streptomyces lucensis MA7349 using an antisense strategy". Organic Letters. 8 (24): 5449–52. doi:10.1021/ol062041r. PMID   17107044.
  5. J., Elks (1990). Dictionary of Drugs Chemical Data, Structures and Bibliographies. Boston, MA: Springer US. ISBN   1-4757-2085-8.

Further reading