Structural stability

Last updated

In mathematics, structural stability is a fundamental property of a dynamical system which means that the qualitative behavior of the trajectories is unaffected by small perturbations (to be exact C1-small perturbations).

Contents

Examples of such qualitative properties are numbers of fixed points and periodic orbits (but not their periods). Unlike Lyapunov stability, which considers perturbations of initial conditions for a fixed system, structural stability deals with perturbations of the system itself. Variants of this notion apply to systems of ordinary differential equations, vector fields on smooth manifolds and flows generated by them, and diffeomorphisms.

Structurally stable systems were introduced by Aleksandr Andronov and Lev Pontryagin in 1937 under the name "systèmes grossiers", or rough systems. They announced a characterization of rough systems in the plane, the Andronov–Pontryagin criterion. In this case, structurally stable systems are typical, they form an open dense set in the space of all systems endowed with appropriate topology. In higher dimensions, this is no longer true, indicating that typical dynamics can be very complex (cf. strange attractor). An important class of structurally stable systems in arbitrary dimensions is given by Anosov diffeomorphisms and flows. During the late 1950s and the early 1960s, Maurício Peixoto and Marília Chaves Peixoto, motivated by the work of Andronov and Pontryagin, developed and proved Peixoto's theorem, the first global characterization of structural stability. [1]

Definition

Let G be an open domain in Rn with compact closure and smooth (n1)-dimensional boundary. Consider the space X1(G) consisting of restrictions to G of C1 vector fields on Rn that are transversal to the boundary of G and are inward oriented. This space is endowed with the C1 metric in the usual fashion. A vector field FX1(G) is weakly structurally stable if for any sufficiently small perturbation F1, the corresponding flows are topologically equivalent on G: there exists a homeomorphism h: GG which transforms the oriented trajectories of F into the oriented trajectories of F1. If, moreover, for any ε > 0 the homeomorphism h may be chosen to be C0ε-close to the identity map when F1 belongs to a suitable neighborhood of F depending on ε, then F is called (strongly) structurally stable. These definitions extend in a straightforward way to the case of n-dimensional compact smooth manifolds with boundary. Andronov and Pontryagin originally considered the strong property. Analogous definitions can be given for diffeomorphisms in place of vector fields and flows: in this setting, the homeomorphism h must be a topological conjugacy.

It is important to note that topological equivalence is realized with a loss of smoothness: the map h cannot, in general, be a diffeomorphism. Moreover, although topological equivalence respects the oriented trajectories, unlike topological conjugacy, it is not time-compatible. Thus, the relevant notion of topological equivalence is a considerable weakening of the naïve C1 conjugacy of vector fields. Without these restrictions, no continuous time system with fixed points or periodic orbits could have been structurally stable. Weakly structurally stable systems form an open set in X1(G), but it is unknown whether the same property holds in the strong case.

Examples

Necessary and sufficient conditions for the structural stability of C1 vector fields on the unit disk D that are transversal to the boundary and on the two-sphere S2 have been determined in the foundational paper of Andronov and Pontryagin. According to the Andronov–Pontryagin criterion, such fields are structurally stable if and only if they have only finitely many singular points (equilibrium states) and periodic trajectories (limit cycles), which are all non-degenerate (hyperbolic), and do not have saddle-to-saddle connections. Furthermore, the non-wandering set of the system is precisely the union of singular points and periodic orbits. In particular, structurally stable vector fields in two dimensions cannot have homoclinic trajectories, which enormously complicate the dynamics, as discovered by Henri Poincaré.

Structural stability of non-singular smooth vector fields on the torus can be investigated using the theory developed by Poincaré and Arnaud Denjoy. Using the Poincaré recurrence map, the question is reduced to determining structural stability of diffeomorphisms of the circle. As a consequence of the Denjoy theorem, an orientation preserving C2 diffeomorphism ƒ of the circle is structurally stable if and only if its rotation number is rational, ρ(ƒ) = p/q, and the periodic trajectories, which all have period q, are non-degenerate: the Jacobian of ƒq at the periodic points is different from 1, see circle map.

Dmitri Anosov discovered that hyperbolic automorphisms of the torus, such as the Arnold's cat map, are structurally stable. He then generalized this statement to a wider class of systems, which have since been called Anosov diffeomorphisms and Anosov flows. One celebrated example of Anosov flow is given by the geodesic flow on a surface of constant negative curvature, cf Hadamard billiards.

History and significance

Structural stability of the system provides a justification for applying the qualitative theory of dynamical systems to analysis of concrete physical systems. The idea of such qualitative analysis goes back to the work of Henri Poincaré on the three-body problem in celestial mechanics. Around the same time, Aleksandr Lyapunov rigorously investigated stability of small perturbations of an individual system. In practice, the evolution law of the system (i.e. the differential equations) is never known exactly, due to the presence of various small interactions. It is, therefore, crucial to know that basic features of the dynamics are the same for any small perturbation of the "model" system, whose evolution is governed by a certain known physical law. Qualitative analysis was further developed by George Birkhoff in the 1920s, but was first formalized with introduction of the concept of rough system by Andronov and Pontryagin in 1937. This was immediately applied to analysis of physical systems with oscillations by Andronov, Witt, and Khaikin. The term "structural stability" is due to Solomon Lefschetz, who oversaw translation of their monograph into English. Ideas of structural stability were taken up by Stephen Smale and his school in the 1960s in the context of hyperbolic dynamics. Earlier, Marston Morse and Hassler Whitney initiated and René Thom developed a parallel theory of stability for differentiable maps, which forms a key part of singularity theory. Thom envisaged applications of this theory to biological systems. Both Smale and Thom worked in direct contact with Maurício Peixoto, who developed Peixoto's theorem in the late 1950s.

When Smale started to develop the theory of hyperbolic dynamical systems, he hoped that structurally stable systems would be "typical". This would have been consistent with the situation in low dimensions: dimension two for flows and dimension one for diffeomorphisms. However, he soon found examples of vector fields on higher-dimensional manifolds that cannot be made structurally stable by an arbitrarily small perturbation (such examples have been later constructed on manifolds of dimension three). This means that in higher dimensions, structurally stable systems are not dense. In addition, a structurally stable system may have transversal homoclinic trajectories of hyperbolic saddle closed orbits and infinitely many periodic orbits, even though the phase space is compact. The closest higher-dimensional analogue of structurally stable systems considered by Andronov and Pontryagin is given by the Morse–Smale systems.

See also

Related Research Articles

<span class="mw-page-title-main">Dynamical system</span> Mathematical model of the time dependence of a point in space

In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a pipe, the random motion of particles in the air, and the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured. Time can be measured by integers, by real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a manifold or simply a set, without the need of a smooth space-time structure defined on it.

<span class="mw-page-title-main">Homogeneous space</span> Topological space in group theory

In mathematics, a homogeneous space is, very informally, a space that looks the same everywhere, as you move through it, with movement given by the action of a group. Homogeneous spaces occur in the theories of Lie groups, algebraic groups and topological groups. More precisely, a homogeneous space for a group G is a non-empty manifold or topological space X on which G acts transitively. The elements of G are called the symmetries of X. A special case of this is when the group G in question is the automorphism group of the space X – here "automorphism group" can mean isometry group, diffeomorphism group, or homeomorphism group. In this case, X is homogeneous if intuitively X looks locally the same at each point, either in the sense of isometry, diffeomorphism, or homeomorphism (topology). Some authors insist that the action of G be faithful, although the present article does not. Thus there is a group action of G on X which can be thought of as preserving some "geometric structure" on X, and making X into a single G-orbit.

<span class="mw-page-title-main">Low-dimensional topology</span> Branch of topology

In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.

<span class="mw-page-title-main">John N. Mather</span> American mathematician

John Norman Mather was a mathematician at Princeton University known for his work on singularity theory and Hamiltonian dynamics. He was descended from Atherton Mather (1663–1734), a cousin of Cotton Mather. His early work dealt with the stability of smooth mappings between smooth manifolds of dimensions n and p. He determined the precise dimensions (n,p) for which smooth mappings are stable with respect to smooth equivalence by diffeomorphisms of the source and target.

<span class="mw-page-title-main">Jacob Palis</span> Brazilian mathematician (born 1940)

Jacob Palis Jr. is a Brazilian mathematician and professor. Palis' research interests are mainly dynamical systems and differential equations. Some themes are global stability and hyperbolicity, bifurcations, attractors and chaotic systems.

In mathematics, symbolic dynamics is the practice of modeling a topological or smooth dynamical system by a discrete space consisting of infinite sequences of abstract symbols, each of which corresponds to a state of the system, with the dynamics (evolution) given by the shift operator. Formally, a Markov partition is used to provide a finite cover for the smooth system; each set of the cover is associated with a single symbol, and the sequences of symbols result as a trajectory of the system moves from one covering set to another.

In mathematics, more particularly in the fields of dynamical systems and geometric topology, an Anosov map on a manifold M is a certain type of mapping, from M to itself, with rather clearly marked local directions of "expansion" and "contraction". Anosov systems are a special case of Axiom A systems.

In the theory of dynamical systems, Peixoto theorem, proved by Maurício Peixoto, states that among all smooth flows on surfaces, i.e. compact two-dimensional manifolds, structurally stable systems may be characterized by the following properties:

<span class="mw-page-title-main">Stable manifold</span> Formalization of the idea of an attractor or repellor in dynamical systems

In mathematics, and in particular the study of dynamical systems, the idea of stable and unstable sets or stable and unstable manifolds give a formal mathematical definition to the general notions embodied in the idea of an attractor or repellor. In the case of hyperbolic dynamics, the corresponding notion is that of the hyperbolic set.

In mathematics, Smale's axiom A defines a class of dynamical systems which have been extensively studied and whose dynamics is relatively well understood. A prominent example is the Smale horseshoe map. The term "axiom A" originates with Stephen Smale. The importance of such systems is demonstrated by the chaotic hypothesis, which states that, 'for all practical purposes', a many-body thermostatted system is approximated by an Anosov system.

In mathematics, specifically geometric topology, the Borel conjecture asserts that an aspherical closed manifold is determined by its fundamental group, up to homeomorphism. It is a rigidity conjecture, asserting that a weak, algebraic notion of equivalence should imply a stronger, topological notion.

Maurício Matos Peixoto,, was a Brazilian engineer and mathematician. He pioneered the studies on structural stability, and was the author of Peixoto's theorem.

In the mathematical area of topology, the generalized Poincaré conjecture is a statement that a manifold which is a homotopy sphere is a sphere. More precisely, one fixes a category of manifolds: topological (Top), piecewise linear (PL), or differentiable (Diff). Then the statement is

In mathematics, specifically geometry and topology, the classification of manifolds is a basic question, about which much is known, and many open questions remain.

In mathematics, topological dynamics is a branch of the theory of dynamical systems in which qualitative, asymptotic properties of dynamical systems are studied from the viewpoint of general topology.

The Andronov–Pontryagin criterion is a necessary and sufficient condition for the stability of dynamical systems in the plane. It was derived by Aleksandr Andronov and Lev Pontryagin in 1937.

In mathematics, the mapping torus in topology of a homeomorphism f of some topological space X to itself is a particular geometric construction with f. Take the cartesian product of X with a closed interval I, and glue the boundary components together by the static homeomorphism:

In dynamical systems theory, an area of pure mathematics, a Morse–Smale system is a smooth dynamical system whose non-wandering set consists of finitely many hyperbolic equilibrium points and hyperbolic periodic orbits and satisfying a transversality condition on the stable and unstable manifolds. Morse–Smale systems are structurally stable and form one of the simplest and best studied classes of smooth dynamical systems. They are named after Marston Morse, the creator of the Morse theory, and Stephen Smale, who emphasized their importance for smooth dynamics and algebraic topology.

<span class="mw-page-title-main">Rufus Bowen</span> American mathematician

Robert Edward "Rufus" Bowen was an internationally known professor in the Department of Mathematics at the University of California, Berkeley, who specialized in dynamical systems theory. Bowen's work dealt primarily with axiom A systems, but the methods he used while exploring topological entropy, symbolic dynamics, ergodic theory, Markov partitions, and invariant measures "have application far beyond the axiom A systems for which they were invented." The Bowen Lectures at the University of California, Berkeley, are given in his honor.

Jorge Manuel Sotomayor Tello was a Peruvian-born Brazilian mathematician who worked on differential equations., bifurcation theory, differential equations of classical geometry.

References

  1. Rahman, Aminur; Blackmore, D. (2023). "The One-Dimensional Version of Peixoto's Structural Stability Theorem: A Calculus-Based Proof". SIAM Review. 65 (3): 869–886. arXiv: 2302.04941 . doi:10.1137/21M1426572. ISSN   0036-1445.