Sun-free photovoltaics

Last updated

Sun-free photovoltaics is a photovoltaics technology which does not require sunlight to produce electricity. [1] This technique was developed by research team at Massachusetts Institute of Technology. [2] Photovoltaic cells convert light to electricity most efficiently at specific wavelengths. [3] [4] The surface features of Sun-free photovoltaics is engineered such that it converts heat energy into the specific wavelengths. [5] This increases the efficiency of existing thermophotovoltaic (TPV) systems. [6]

Contents

Principle of working

The surface of this material is etched with billions of nanoscale pits, so that it emits wave at the specified wavelengths [2] [6] and suppresses other wavelengths which are not required. [6] When the surface is exposed to heat energy, it radiates light energy at required wavelengths. [7] The atoms liberates free electrons when radiation is applied, thus generating electricity. [8]

Development

A device that uses radioisotopes is capable of producing electricity for up to 30 years without interruption using a process called radioactive decay. [2] Another similar device was developed by researchers from MIT, which uses butane as a fuel source. It has the size of a button and is estimated to operate three times longer than a similarly sized lithium-ion battery [5] and has the advantage of recharging immediately upon refuelling. [1] Thermo-photovoltaics, which is a technology developed in the 1960s, is capable of converting heat energy into electricity. [1] It was previously known that sunlight is not absolutely necessary for photovoltaic cells to operate. [3] Infrared radiation is not utilized efficiently in photovoltaic materials which are characterized by low band gap, [5] though the performance is comparatively better than normal silicon photovoltaic cells. [4] One example of photovoltaics utilizing heat is a photovoltaic diode which produces electricity from heat given off by a hydrocarbon fuelled thermal emitter. [1] [9]

In Sun-free photovoltaics, the thermal emitter described above is finely tuned to emit specific wavelengths that the photovoltaic diode can utilize, while at the same time stopping the wavelengths that cannot be used by the diode. [4] This is achieved by etching features of nanoscale like ridges and holes on a photonic crystal [3] so that the light passing through the crystal can be modified. [1]

Operation

A slab of tungsten [8] is used as a thermal emitter with billions of nanoscale pits on the surface, [1] with each pit acting like a resonator. [3] On heating, specific wavelengths are radiated by the slab as it generates an altered emission spectrum. [3]

Applications

Sun-free photovoltaics can be applied in electronic devices like smartphones. Its value of current density has the capability to be tripled in the coming years, when it could power a smartphone for more than 20 days without needing to recharge in between. [5] It can also be used to utilize waste heat from electric appliances like televisions and electronic appliances like mobile phones. [2] [8]

Related Research Articles

<span class="mw-page-title-main">Solar energy</span> Radiant light and heat from the Sun, harnessed with technology

Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy, and solar architecture. It is an essential source of renewable energy, and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power, and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light-dispersing properties, and designing spaces that naturally circulate air.

<span class="mw-page-title-main">Gallium arsenide</span> Chemical compound

Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a zinc blende crystal structure.

An atomic battery, nuclear battery, radioisotope battery or radioisotope generator is a device which uses energy from the decay of a radioactive isotope to generate electricity. Like nuclear reactors, they generate electricity from nuclear energy, but differ in that they do not use a chain reaction. Although commonly called batteries, they are technically not electrochemical and cannot be charged or recharged. They are very costly, but have an extremely long life and high energy density, and so they are typically used as power sources for equipment that must operate unattended for long periods of time, such as spacecraft, pacemakers, underwater systems and automated scientific stations in remote parts of the world.

Thermophotovoltaic (TPV) energy conversion is a direct conversion process from heat to electricity via photons. A basic thermophotovoltaic system consists of a hot object emitting thermal radiation and a photovoltaic cell similar to a solar cell but tuned to the spectrum being admitted from the hot object.

<span class="mw-page-title-main">Solar panel</span> Assembly of photovoltaic cells used to generate electrical power

A solar panel is a device that converts sunlight into electricity by using photovoltaic (PV) cells. PV cells are made of materials that generate electrons when exposed to light. The electrons flow through a circuit and produce direct current (DC) electricity, which can be used to power various devices or be stored in batteries. Solar panels are also known as solar cell panels, solar electric panels, or PV modules.

<span class="mw-page-title-main">Solar panels on spacecraft</span> Photovoltaic solar panels on spacecraft operating in the inner solar system

Spacecraft operating in the inner Solar System usually rely on the use of power electronics-managed photovoltaic solar panels to derive electricity from sunlight. Outside the orbit of Jupiter, solar radiation is too weak to produce sufficient power within current solar technology and spacecraft mass limitations, so radioisotope thermoelectric generators (RTGs) are instead used as a power source.

<span class="mw-page-title-main">Building-integrated photovoltaics</span> Photovoltaic materials used to replace conventional building materials

Building-integrated photovoltaics (BIPV) are photovoltaic materials that are used to replace conventional building materials in parts of the building envelope such as the roof, skylights, or facades. They are increasingly being incorporated into the construction of new buildings as a principal or ancillary source of electrical power, although existing buildings may be retrofitted with similar technology. The advantage of integrated photovoltaics over more common non-integrated systems is that the initial cost can be offset by reducing the amount spent on building materials and labor that would normally be used to construct the part of the building that the BIPV modules replace. In addition, BIPV allows for more widespread solar adoption when the building's aesthetics matter and traditional rack-mounted solar panels would disrupt the intended look of the building.

Thermophotonics is a concept for generating usable power from heat which shares some features of thermophotovoltaic (TPV) power generation. Thermophotonics was first publicly proposed by solar photovoltaic researcher Martin Green in 2000. However, no TPX device is known to have been demonstrated to date, apparently because of the stringent requirement on the emitter efficiency.

<span class="mw-page-title-main">Multi-junction solar cell</span> Solar power cell with multiple band gaps from different materials

Multi-junction (MJ) solar cells are solar cells with multiple p–n junctions made of different semiconductor materials. Each material's p-n junction will produce electric current in response to different wavelengths of light. The use of multiple semiconducting materials allows the absorbance of a broader range of wavelengths, improving the cell's sunlight to electrical energy conversion efficiency.

<span class="mw-page-title-main">Shockley–Queisser limit</span> Maximum theoretical efficiency of a solar cell

In physics, the radiative efficiency limit is the maximum theoretical efficiency of a solar cell using a single p-n junction to collect power from the cell where the only loss mechanism is radiative recombination in the solar cell. It was first calculated by William Shockley and Hans-Joachim Queisser at Shockley Semiconductor in 1961, giving a maximum efficiency of 30% at 1.1 eV. The limit is one of the most fundamental to solar energy production with photovoltaic cells, and is considered to be one of the most important contributions in the field.

<span class="mw-page-title-main">Solar architecture</span>

Solar architecture is an architectural approach that takes in account the Sun to harness clean and renewable solar power. It is related to the fields of optics, thermics, electronics and materials science. Both active and passive solar housing skills are involved in solar architecture.

<span class="mw-page-title-main">Photovoltaic thermal hybrid solar collector</span>

Photovoltaic thermal collectors, typically abbreviated as PVT collectors and also known as hybrid solar collectors, photovoltaic thermal solar collectors, PV/T collectors or solar cogeneration systems, are power generation technologies that convert solar radiation into usable thermal and electrical energy. PVT collectors combine photovoltaic solar cells, which convert sunlight into electricity, with a solar thermal collector, which transfers the otherwise unused waste heat from the PV module to a heat transfer fluid. By combining electricity and heat generation within the same component, these technologies can reach a higher overall efficiency than solar photovoltaic (PV) or solar thermal (T) alone.

<span class="mw-page-title-main">Optical rectenna</span>

An optical rectenna is a rectenna that works with visible or infrared light. A rectenna is a circuit containing an antenna and a diode, which turns electromagnetic waves into direct current electricity. While rectennas have long been used for radio waves or microwaves, an optical rectenna would operate the same way but with infrared or visible light, turning it into electricity.

<span class="mw-page-title-main">Concentrator photovoltaics</span> Use of mirror or lens assemblies to generate current from multi-junction solar cells

Concentrator photovoltaics (CPV) is a photovoltaic technology that generates electricity from sunlight. Unlike conventional photovoltaic systems, it uses lenses or curved mirrors to focus sunlight onto small, highly efficient, multi-junction (MJ) solar cells. In addition, CPV systems often use solar trackers and sometimes a cooling system to further increase their efficiency.

<span class="mw-page-title-main">Solar cell research</span> Research in the field of photovoltaics

There are currently many research groups active in the field of photovoltaics in universities and research institutions around the world. This research can be categorized into three areas: making current technology solar cells cheaper and/or more efficient to effectively compete with other energy sources; developing new technologies based on new solar cell architectural designs; and developing new materials to serve as more efficient energy converters from light energy into electric current or light absorbers and charge carriers.

<span class="mw-page-title-main">Solar-cell efficiency</span> Ratio of energy extracted from sunlight in solar cells

Solar-cell efficiency refers to the portion of energy in the form of sunlight that can be converted via photovoltaics into electricity by the solar cell.

Solar energy – radiant light and heat from the sun. It has been harnessed by humans since ancient times using a range of ever-evolving technologies. Solar energy technologies include solar heating, solar photovoltaics, solar thermal electricity and solar architecture, which can make considerable contributions to solving some of the most urgent problems that the world now faces.

There are many practical applications for solar panels or photovoltaics. From the fields of the agricultural industry as a power source for irrigation to its usage in remote health care facilities to refrigerate medical supplies. Other applications include power generation at various scales and attempts to integrate them into homes and public infrastructure. PV modules are used in photovoltaic systems and include a large variety of electrical devices.

<span class="mw-page-title-main">Concentrated photovoltaic thermal system</span>

The combination of photovoltaic (PV) technology, solar thermal technology, and reflective or refractive solar concentrators has been a highly appealing option for developers and researchers since the late 1970s and early 1980s. The result is what is known as a concentrated photovoltaic thermal (CPVT) system which is a hybrid combination of concentrated photovoltaic (CPV) and photovoltaic thermal (PVT) systems.

Light-emitting diodes (LEDs) produce light by the recombination of electrons and electron holes in a semiconductor, a process called "electroluminescence". The wavelength of the light produced depends on the energy band gap of the semiconductors used. Since these materials have a high index of refraction, design features of the devices such as special optical coatings and die shape are required to efficiently emit light. A LED is a long-lived light source, but certain mechanisms can cause slow loss of efficiency of the device or sudden failure. The wavelength of the light emitted is a function of the band gap of the semiconductor material used; materials such as gallium arsenide, and others, with various trace doping elements, are used to produce different colors of light. Another type of LED uses a quantum dot which can have its properties and wavelength adjusted by its size. Light-emitting diodes are widely used in indicator and display functions, and white LEDs are displacing other technologies for general illumination purposes.

References

  1. 1 2 3 4 5 6 "Sun-free photovoltaics - Materials engineered to give off precisely tuned wavelengths of light when heated are key to new high-efficiency genserating system". Massachusetts Institute of Technology . Retrieved 2011-08-08.
  2. 1 2 3 4 "PHOTOVOLTAIC ELECTRICITY GENERATION WITHOUT SUNLIGHT". Electronics News. Retrieved 2011-08-10.
  3. 1 2 3 4 5 "Sun-Free Photovoltaics: Materials Engineered to Give Off Precisely Tuned Wavelengths of Light When Heated". sciencedaily.com. Retrieved 2011-08-08.
  4. 1 2 3 "Sun-free photovoltaics". nanowerk.com. Retrieved 2011-08-08.
  5. 1 2 3 4 "Sun-free photovoltaics". physorg.com. Retrieved 2011-08-08.
  6. 1 2 3 "MIT reports breakthrough in heat-based photovoltaics". gizmag.com. 2 August 2011. Retrieved 2011-08-08.
  7. ""Sun-Free" Photovoltaics!". crazyengineers.com. Retrieved 2011-08-08.
  8. 1 2 3 "Solar cells need no sun, just heat to create energy - Promising new technology can turn nearly anything hot into a power source". MSN. 2 August 2011. Retrieved 2011-08-10.
  9. Free Electricity Generator

See also