Surface metrology

Last updated

Surface metrology is the measurement of small-scale features on surfaces, and is a branch of metrology. Surface primary form, surface fractality, and surface finish (including surface roughness) are the parameters most commonly associated with the field. It is important to many disciplines and is mostly known for the machining of precision parts and assemblies which contain mating surfaces or which must operate with high internal pressures.

Contents

Surface finish may be measured in two ways: contact and non-contact methods. Contact methods involve dragging a measurement stylus across the surface; these instruments are called profilometers. Non-contact methods include: interferometry, digital holography, confocal microscopy, focus variation, structured light, electrical capacitance, electron microscopy, photogrammetry and non-contact profilometers.

Overview

The most common method is to use a diamond stylus profilometer. The stylus is run perpendicular to the lay of the surface. [1] The probe usually traces along a straight line on a flat surface or in a circular arc around a cylindrical surface. The length of the path that it traces is called the measurement length. The wavelength of the lowest frequency filter that will be used to analyze the data is usually defined as the sampling length. Most standards recommend that the measurement length should be at least seven times longer than the sampling length, and according to the Nyquist–Shannon sampling theorem it should be at least two times longer than the wavelength of interesting features. The assessment length or evaluation length is the length of data that will be used for analysis. Commonly one sampling length is discarded from each end of the measurement length. 3D measurements can be made with a profilometer by scanning over a 2D area on the surface.

The disadvantage of a profilometer is that it is not accurate when the size of the features of the surface are close to the same size as the stylus. Another disadvantage is that profilometers have difficulty detecting flaws of the same general size as the roughness of the surface. [1] There are also limitations for non-contact instruments. For example, instruments that rely on optical interference cannot resolve features that are less than some fraction of the operating wavelength. This limitation can make it difficult to accurately measure roughness even on common objects, since the interesting features may be well below the wavelength of light. The wavelength of red light is about 650 nm, [2] while the average roughness, (Ra) of a ground shaft might be 200 nm.

The first step of analysis is to filter the raw data to remove very high frequency data (called "micro-roughness") since it can often be attributed to vibrations or debris on the surface. Filtering out the micro-roughness at a given cut-off threshold also allows to bring closer the roughness assessment made using profilometers having different stylus ball radius e.g. 2 µm and 5 µm radii. Next, the data is separated into roughness, waviness and form. This can be accomplished using reference lines, envelope methods, digital filters, fractals or other techniques. Finally, the data is summarized using one or more roughness parameters, or a graph. In the past, surface finish was usually analyzed by hand. The roughness trace would be plotted on graph paper, and an experienced machinist decided what data to ignore and where to place the mean line. Today, the measured data is stored on a computer, and analyzed using methods from signal analysis and statistics. [3]

Equipment

Contact (tactile measurement)

Rugosimetro portatile.jpg

Stylus-based contact instruments have the following advantages:

Technologies:

Non-contact (optical microscopes)

Optical measurement instruments have some advantages over the tactile ones as follows:

Vertical scanning:

Horizontal scanning:

Non-scanning

Choice of the right measurement instrument

Because every instrument has advantages and disadvantages the operator must choose the right instrument depending on the measurement application. In the following some advantages and disadvantages to the main technologies are listed:

Resolution

The scale of the desired measurement will help decide which type of microscope will be used.

For 3D measurements, the probe is commanded to scan over a 2D area on the surface. The spacing between data points may not be the same in both directions.

In some cases, the physics of the measuring instrument may have a large effect on the data. This is especially true when measuring very smooth surfaces. For contact measurements, most obvious problem is that the stylus may scratch the measured surface. Another problem is that the stylus may be too blunt to reach the bottom of deep valleys and it may round the tips of sharp peaks. In this case the probe is a physical filter that limits the accuracy of the instrument.

Roughness parameters

The real surface geometry is so complicated that a finite number of parameters cannot provide a full description. If the number of parameters used is increased, a more accurate description can be obtained. This is one of the reasons for introducing new parameters for surface evaluation. Surface roughness parameters are normally categorised into three groups according to its functionality. These groups are defined as amplitude parameters, spacing parameters, and hybrid parameters. [6]

Profile roughness parameters

Parameters used to describe surfaces are largely statistical indicators obtained from many samples of the surface height. Some examples include:

Table of useful surface metrics
ParameterNameDescriptionTypeFormula
Ra, Raa, Ryni arithmetic average of absolute values Mean of the absolute values of the profile heights measured from a mean line averaged over the profileAmplitude
Rq, RRMS root mean squared Amplitude
Rvmaximum valley depthMaximum depth of the profile below the mean line with the sampling lengthAmplitude
Rpmaximum peak heightMaximum height of the profile above the mean line within the sampling lengthAmplitude
RtMaximum Height of the ProfileMaximum peak to valley height of the profile in the assessment lengthAmplitude
Rsk Skewness Symmetry of the profile about the mean lineAmplitude
Rku Kurtosis Measure of the sharpness of the surface profileHybrid
RSmMean Peak SpacingMean Spacing between peaks at the mean lineSpatial

This is a small subset of available parameters described in standards like ASME B46.1 [7] and ISO 4287. [8] Most of these parameters originated from the capabilities of profilometers and other mechanical probe systems. In addition, new measures of surface dimensions have been developed which are more directly related to the measurements made possible by high-definition optical gauging technologies.

Most of these parameters can be estimated using the SurfCharJ plugin for the ImageJ.

Areal surface parameters

The surface roughness can also be calculated over an area. This gives Sa instead of Ra values. The ISO 25178 series describes all these roughness values in detail. The advantage over the profile parameters are:

Surfaces have fractal properties, multi-scale measurements can also be made such as Length-scale Fractal Analysis or Area-scale Fractal Analysis. [9]

Filtering

To obtain the surface characteristic almost all measurements are subject to filtering. It is one of the most important topics when it comes to specifying and controlling surface attributes such as roughness, waviness, and form error. These components of the surface deviations must be distinctly separable in measurement to achieve a clear understanding between the surface supplier and the surface recipient as to the expected characteristics of the surface in question. Typically, either digital or analog filters are used to separate form error, waviness, and roughness resulting from a measurement. Main multi-scale filtering methods are Gaussian filtering, Wavelet transform and more recently Discrete Modal Decomposition. There are three characteristics of these filters that should be known in order to understand the parameter values that an instrument may calculate. These are the spatial wavelength at which a filter separates roughness from waviness or waviness from form error, the sharpness of a filter or how cleanly the filter separates two components of the surface deviations and the distortion of a filter or how much the filter alters a spatial wavelength component in the separation process. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Interferometry</span> Measurement method using interference of waves

Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy, quantum mechanics, nuclear and particle physics, plasma physics, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.

<span class="mw-page-title-main">Optical coherence tomography</span> Imaging technique

Optical coherence tomography (OCT) is an imaging technique that uses interferometry with short-coherence-length light to obtain micrometer-level depth resolution and uses transverse scanning of the light beam to form two- and three-dimensional images from light reflected from within biological tissue or other scattering media. Short-coherence-length light can be obtained using a superluminescent diode (SLD) with a broad spectral bandwidth or a broadly tunable laser with narrow linewidth. The first demonstration of OCT imaging was published by a team from MIT and Harvard Medical School in a 1991 article in the journal Science. The article introduced the term "OCT" to credit its derivation from optical coherence-domain reflectometry, in which the axial resolution is based on temporal coherence. The first demonstrations of in vivo OCT imaging quickly followed.

<span class="mw-page-title-main">Ellipsometry</span> Optical technique for characterizing thin films

Ellipsometry is an optical technique for investigating the dielectric properties of thin films. Ellipsometry measures the change of polarization upon reflection or transmission and compares it to a model.

<span class="mw-page-title-main">Lapping</span> Process of removing material from two workpieces

Lapping is a machining process in which two surfaces are rubbed together with an abrasive between them, by hand movement or using a machine.

<span class="mw-page-title-main">Surface roughness</span> Measure of surface finish or texture

Surface roughness can be regarded as the quality of a surface of not being smooth and it is hence linked to human (haptic) perception of the surface texture. From a mathematical perspective it is related to the spatial variability structure of surfaces, and inherently it is a multiscale property. It has different interpretations and definitions depending on the disciplines considered.

<span class="mw-page-title-main">Coordinate-measuring machine</span> Device for measuring the geometry of objects

A coordinate measuring machine (CMM) is a device that measures the geometry of physical objects by sensing discrete points on the surface of the object with a probe. Various types of probes are used in CMMs, the most common being mechanical and laser sensors, though optical and white light sensors do exist. Depending on the machine, the probe position may be manually controlled by an operator or it may be computer controlled. CMMs typically specify a probe's position in terms of its displacement from a reference position in a three-dimensional Cartesian coordinate system. In addition to moving the probe along the X, Y, and Z axes, many machines also allow the probe angle to be controlled to allow measurement of surfaces that would otherwise be unreachable.

<span class="mw-page-title-main">Profilometer</span> Measuring instrument for surface profile and roughness

A profilometer is a measuring instrument used to measure a surface's profile, in order to quantify its roughness. Critical dimensions as step, curvature, flatness are computed from the surface topography.

Surface finish, also known as surface texture or surface topography, is the nature of a surface as defined by the three characteristics of lay, surface roughness, and waviness. It comprises the small, local deviations of a surface from the perfectly flat ideal.

<span class="mw-page-title-main">Neutron reflectometry</span>

Neutron reflectometry is a neutron diffraction technique for measuring the structure of thin films, similar to the often complementary techniques of X-ray reflectivity and ellipsometry. The technique provides valuable information over a wide variety of scientific and technological applications including chemical aggregation, polymer and surfactant adsorption, structure of thin film magnetic systems, biological membranes, etc.

ISO 25178: Geometrical Product Specifications (GPS) – Surface texture: areal is an International Organization for Standardization collection of international standards relating to the analysis of 3D areal surface texture.

<span class="mw-page-title-main">Laser beam profiler</span> Measurement device

A laser beam profiler captures, displays, and records the spatial intensity profile of a laser beam at a particular plane transverse to the beam propagation path. Since there are many types of lasers—ultraviolet, visible, infrared, continuous wave, pulsed, high-power, low-power—there is an assortment of instrumentation for measuring laser beam profiles. No single laser beam profiler can handle every power level, pulse duration, repetition rate, wavelength, and beam size.

Road surface textures are deviations from a planar and smooth surface, affecting the vehicle/tyre interaction. Pavement texture is divided into: microtexture with wavelengths from 0 mm to 0.5 millimetres (0.020 in), macrotexture with wavelengths from 0.5 millimetres (0.020 in) to 50 millimetres (2.0 in) and megatexture with wavelengths from 50 millimetres (2.0 in) to 500 millimetres (20 in).

Focus variation is a method used to sharpen images and to measure surface irregularities by means of optics with limited depth of field.

Waviness is the measurement of the more widely spaced component of surface texture. It is a broader view of roughness because it is more strictly defined as "the irregularities whose spacing is greater than the roughness sampling length". It can occur from machine or work deflections, chatter, residual stress, vibrations, or heat treatment. Waviness should also be distinguished from flatness, both by its shorter spacing and its characteristic of being typically periodic in nature.

<span class="mw-page-title-main">White light scanner</span>

A white light scanner (WLS) is a device for performing surface height measurements of an object using coherence scanning interferometry (CSI) with spectrally-broadband, "white light" illumination. Different configurations of scanning interferometer may be used to measure macroscopic objects with surface profiles measuring in the centimeter range, to microscopic objects with surface profiles measuring in the micrometer range. For large-scale non-interferometric measurement systems, see structured-light 3D scanner.

<span class="mw-page-title-main">MountainsMap</span>

Mountains is an image analysis and surface metrology software platform published by the company Digital Surf. Its core is micro-topography, the science of studying surface texture and form in 3D at the microscopic scale. The software is dedicated to profilometers, 3D light microscopes ("MountainsMap"), scanning electron microscopes ("MountainsSEM") and scanning probe microscopes ("MountainsSPIP").

Digital Surf is a French software company formed in 1989 mainly known for its Mountains software, that is offered as embedded or optional OEM surface analysis software by the majority of profilometer and microscope manufacturers.

Length measurement, distance measurement, or range measurement (ranging) refers to the many ways in which length, distance, or range can be measured. The most commonly used approaches are the rulers, followed by transit-time methods and the interferometer methods based upon the speed of light.

Taylor Hobson is an English company founded in 1886 and located in Leicester, England. Originally a manufacturer of still camera and cine lenses, the company now manufactures precision metrology instruments—in particular, profilometers for the analysis of surface textures and forms.

<span class="mw-page-title-main">White light interferometry</span> Measurement technique

As described here, white light interferometry is a non-contact optical method for surface height measurement on 3D structures with surface profiles varying between tens of nanometers and a few centimeters. It is often used as an alternative name for coherence scanning interferometry in the context of areal surface topography instrumentation that relies on spectrally-broadband, visible-wavelength light.

References

  1. 1 2 Degarmo, E. Paul; Black, J T.; Kohser, Ronald A. (2003). Materials and Processes in Manufacturing (9th ed.). Wiley. pp. 223–224. ISBN   0-471-65653-4.
  2. "What Wavelength Goes With a Color?". Archived from the original on 2011-07-20. Retrieved 2008-05-14.
  3. Whitehouse, DJ. (1994). Handbook of Surface Metrology, Bristol: Institute of Physics Publishing. ISBN   0-7503-0039-6
  4. Gao, F; Leach, R K; Petzing, J; Coupland, J M (2008). "Surface Measurement errors using commercial scanning white light interferometers". Measurement Science and Technology. 19 (1): 015303. Bibcode:2008MeScT..19a5303G. doi:10.1088/0957-0233/19/1/015303.
  5. Rhee, H. G.; Vorburger, T. V.; Lee, J. W.; Fu, J (2005). "Discrepancies between roughness measurements obtained with phase-shifting and white-light interferometry". Applied Optics. 44 (28): 5919–27. Bibcode:2005ApOpt..44.5919R. doi:10.1364/AO.44.005919. PMID   16231799.
  6. Gadelmawla E.S.; Koura M.M.; Maksoud T.M.A.; Elewa I.M.; Soliman H.H. (2002). "Roughness parameters". Journal of Materials Processing Technology. 123: 133–145. doi:10.1016/S0924-0136(02)00060-2.
  7. 1 2 "B46.1 - Surface Texture (Surface Roughness, Waviness, and Lay)". ASME. 2009. Archived from the original on 14 Apr 2013. Retrieved 2016-03-26.
  8. "ISO 4287:1997 - Geometrical Product Specifications (GPS) — Surface texture: Profile method — Terms, definitions and surface texture parameters". ISO. Archived from the original on Jan 19, 2004.
  9. "Surface Metrology Laboratory – Washburn Shops 243 – Scale-sensitive Fractal Analysis". Worcester Polytechnic Institute Mechanical Engineering Department. September 28, 2007. Archived from the original on Apr 21, 2012. Retrieved 2016-03-26.