This article needs additional citations for verification .(July 2023) |
TLS acceleration (formerly known as SSL acceleration) is a method of offloading processor-intensive public-key encryption for Transport Layer Security (TLS) and its predecessor Secure Sockets Layer (SSL) [1] to a hardware accelerator.
Typically this means having a separate card that plugs into a PCI slot in a computer that contains one or more coprocessors able to handle much of the SSL processing.
TLS accelerators may use off-the-shelf CPUs, but most use custom ASIC and RISC chips to do most of the difficult computational work.
The most computationally expensive part of a TLS session is the TLS handshake, where the TLS server (usually a webserver) and the TLS client (usually a web browser) agree on a number of parameters that establish the security of the connection. During the TLS handshake the server and the client establish session keys (symmetric keys, used for the duration of a given session), but the encryption and signature of the TLS handshake messages itself is done using asymmetric keys, which requires more computational power than the symmetric cryptography used for the encryption/decryption of the session data.
Typically a hardware TLS accelerator will offload processing of the TLS handshake while leaving it to the server software to process the less intense symmetric cryptography of the actual TLS data exchange, but some accelerators handle all TLS operations and terminate the TLS connection, thus leaving the server seeing only decrypted connections. Sometimes data centers employ dedicated servers for TLS acceleration in a reverse proxy configuration.
Modern x86 CPUs support Advanced Encryption Standard (AES) encoding and decoding in hardware, using the AES instruction set proposed by Intel in March 2008.
Allwinner Technology provides a hardware cryptographic accelerator in its A10, A20, A30 and A80 ARM system-on-chip series, and all ARM CPUs have acceleration in the later ARMv8 architecture. The accelerator provides the RSA public-key algorithm, several widely used symmetric-key algorithms, cryptographic hash functions, and a cryptographically secure pseudo-random number generator. [2]
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security.
A secure cryptoprocessor is a dedicated computer-on-a-chip or microprocessor for carrying out cryptographic operations, embedded in a packaging with multiple physical security measures, which give it a degree of tamper resistance. Unlike cryptographic processors that output decrypted data onto a bus in a secure environment, a secure cryptoprocessor does not output decrypted data or decrypted program instructions in an environment where security cannot always be maintained.
Transport Layer Security (TLS) is a cryptographic protocol designed to provide communications security over a computer network. The protocol is widely used in applications such as email, instant messaging, and voice over IP, but its use in securing HTTPS remains the most publicly visible.
In cryptography, a timing attack is a side-channel attack in which the attacker attempts to compromise a cryptosystem by analyzing the time taken to execute cryptographic algorithms. Every logical operation in a computer takes time to execute, and the time can differ based on the input; with precise measurements of the time for each operation, an attacker can work backwards to the input. Finding secrets through timing information may be significantly easier than using cryptanalysis of known plaintext, ciphertext pairs. Sometimes timing information is combined with cryptanalysis to increase the rate of information leakage.
In cryptography, Camellia is a symmetric key block cipher with a block size of 128 bits and key sizes of 128, 192 and 256 bits. It was jointly developed by Mitsubishi Electric and NTT of Japan. The cipher has been approved for use by the ISO/IEC, the European Union's NESSIE project and the Japanese CRYPTREC project. The cipher has security levels and processing abilities comparable to the Advanced Encryption Standard.
Crypto API is a cryptography framework in the Linux kernel, for various parts of the kernel that deal with cryptography, such as IPsec and dm-crypt. It was introduced in kernel version 2.5.45 and has since expanded to include essentially all popular block ciphers and hash functions.
A hardware security module (HSM) is a physical computing device that safeguards and manages secrets, performs encryption and decryption functions for digital signatures, strong authentication and other cryptographic functions. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server. A hardware security module contains one or more secure cryptoprocessor chips.
Network Security Services (NSS) is a collection of cryptographic computer libraries designed to support cross-platform development of security-enabled client and server applications with optional support for hardware TLS/SSL acceleration on the server side and hardware smart cards on the client side. NSS provides a complete open-source implementation of cryptographic libraries supporting Transport Layer Security (TLS) / Secure Sockets Layer (SSL) and S/MIME. NSS releases prior to version 3.14 are tri-licensed under the Mozilla Public License 1.1, the GNU General Public License, and the GNU Lesser General Public License. Since release 3.14, NSS releases are licensed under GPL-compatible Mozilla Public License 2.0.
In computing, a cryptographic accelerator is a co-processor designed specifically to perform computationally intensive cryptographic operations, doing so far more efficiently than the general-purpose CPU. Because many servers' system loads consist mostly of cryptographic operations, this can greatly increase performance.
An AES instruction set is a set of instructions that are specifically designed to perform AES encryption and decryption operations efficiently. These instructions are typically found in modern processors and can greatly accelerate AES operations compared to software implementations. An AES instruction set includes instructions for key expansion, encryption, and decryption using various key sizes.
There are various implementations of the Advanced Encryption Standard, also known as Rijndael.
A cipher suite is a set of algorithms that help secure a network connection. Suites typically use Transport Layer Security (TLS) or its deprecated predecessor Secure Socket Layer (SSL). The set of algorithms that cipher suites usually contain include: a key exchange algorithm, a bulk encryption algorithm, and a message authentication code (MAC) algorithm.
wolfSSL is a small, portable, embedded SSL/TLS library targeted for use by embedded systems developers. It is an open source implementation of TLS written in the C programming language. It includes SSL/TLS client libraries and an SSL/TLS server implementation as well as support for multiple APIs, including those defined by SSL and TLS. wolfSSL also includes an OpenSSL compatibility interface with the most commonly used OpenSSL functions.
The Transport Layer Security (TLS) protocol provides the ability to secure communications across or inside networks. This comparison of TLS implementations compares several of the most notable libraries. There are several TLS implementations which are free software and open source.
The OpenBSD Cryptographic Framework (OCF) is a service virtualization layer for the uniform management of cryptographic hardware by an operating system. It is part of the OpenBSD Project, having been included in the operating system since OpenBSD 2.8. Like other OpenBSD projects such as OpenSSH, it has been ported to other systems based on Berkeley Unix such as FreeBSD and NetBSD, and to Solaris and Linux. One of the Linux ports is supported by Intel for use with its proprietary cryptographic software and hardware to provide hardware-accelerated SSL encryption for the open source Apache HTTP Server.
A TLS termination proxy is a proxy server that acts as an intermediary point between client and server applications, and is used to terminate and/or establish TLS tunnels by decrypting and/or encrypting communications. This is different from TLS pass-through proxies that forward encrypted (D)TLS traffic between clients and servers without terminating the tunnel.
The tables below compare cryptography libraries that deal with cryptography algorithms and have application programming interface (API) function calls to each of the supported features.
Hardware-based encryption is the use of computer hardware to assist software, or sometimes replace software, in the process of data encryption. Typically, this is implemented as part of the processor's instruction set. For example, the AES encryption algorithm can be implemented using the AES instruction set on the ubiquitous x86 architecture. Such instructions also exist on the ARM architecture. However, more unusual systems exist where the cryptography module is separate from the central processor, instead being implemented as a coprocessor, in particular a secure cryptoprocessor or cryptographic accelerator, of which an example is the IBM 4758, or its successor, the IBM 4764. Hardware implementations can be faster and less prone to exploitation than traditional software implementations, and furthermore can be protected against tampering.
Application Layer Transport Security (ALTS) is a Google-developed authentication and transport encryption system used for securing Remote Procedure Call (RPC) within Google machines. Google started its development in 2023, as a tailored modification of TLS.
ChaCha20-Poly1305 is an authenticated encryption with additional data (AEAD) algorithm, that combines the ChaCha20 stream cipher with the Poly1305 message authentication code. Its usage in IETF protocols is standardized in RFC 8439. It has fast software performance, and without hardware acceleration, is usually faster than AES-GCM.