TMEM70

Last updated
TMEM70
Identifiers
Aliases TMEM70 , MC5DN2, transmembrane protein 70
External IDs OMIM: 612418 MGI: 1915068 HomoloGene: 9890 GeneCards: TMEM70
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001040613
NM_017866

NM_026392
NM_027415

RefSeq (protein)

NP_001035703
NP_060336

NP_080668
NP_081691

Location (UCSC) Chr 8: 73.97 – 73.98 Mb Chr 1: 16.74 – 16.75 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Transmembrane protein 70 is a protein that in humans is encoded by the TMEM70 gene. It is a transmembrane protein located in the mitochondrial inner membrane involved in the assembly of the F1 and Fo structural subunits of ATP synthase. [5] Mutations in this gene have been associated with neonatal mitochondrial encephalo-cardiomyopathy due to ATP synthase (Complex V) deficiency, causing a wide variety of symptoms including 3-methylglutaconic aciduria, lactic acidosis, mitochondrial myopathy, and cardiomyopathy. [6] [7]

Contents

Structure

The TMEM70 gene has 4 exons and is located on the q arm of chromosome 8 in position 21.11 and spans 6,642 base pairs. [5] The gene produces a 29 kDa protein composed of 260 amino acids. [8] [9] The encoded protein is a multi-pass transmembrane protein localized to the mitochondrial inner membrane. [10] [11] It contains two putative transmembrane regions and the conserved domain DUF1301. [12] [6]

Function

The encoded protein is involved in the assembly of the F1 and Fo structural subunits of ATP synthase. [5]

Clinical significance

Mutations in the TMEM70 gene have been associated with neonatal mitochondrial encephalocardiomyopathy due to nuclear type 2 Complex V (ATP synthase) deficiency. [5] There are a wide variety of possible symptoms depending on the mutation, including 3-methylglutaconic aciduria, dysmorphic features, psychomotor retardation, hypotonia, growth retardation, mitochondrial myopathy and cardiomyopathy, hepatomegaly, hypoplastic kidneys, and elevated lactate levels in urine, plasma, and cerebrospinal fluid. [11] [7]

Most notably, a c.317-2A→G mutation in the splice site of intron 2 of this gene caused aberrant splicing and the loss of the TMEM70 transcript. [13] This resulted in ATP synthase deficiency symptomized by apneoic spells, hypertrophic cardiomyopathy, profound lactic acidosis, hyperammonaemia, psychomotor retardation, 3-methylglutaconic aciduria, failure to thrive, and severe muscular hypotonia. Also noted in some patients were hypospadias, intrauterine growth retardation, microcephaly and cryptorchidism, but most patients did not survive the neonatal period. [14]

Another mutation (c.366A>T) in the second exon of this gene caused an amino acid substitution (Y112X), resulting in Nuclear Type 2 Mitochondrial Complex V deficiency symptomized by lactic acidosis, psychomotor retardation, facial dysmorphism, hypertrophic cardiomyopathy, and hypospadia. [15] [6]

A study of mitochondrial morphology in patients with mutations in this gene revealed disorganization of the mitochondrial nucleoid. Mitochondria were abnormal, with whorled cristae and disrupted nucleoid clusters of mtDNA. The nucleoids and mitochondrial respiratory chain complexes were confined to the outer rings of the whorls. [7]

Interactions

The encoded protein has protein-protein interactions with RAB2A, PHC2, NDUFAF8, NDUFS5, COX6B1, ECSIT, NDUFAF4, and COA3. [16]

Related Research Articles

<span class="mw-page-title-main">Tafazzin</span> Protein found in humans

Tafazzin is a protein that in humans is encoded by the TAFAZZIN gene. Tafazzin is highly expressed in cardiac and skeletal muscle, and functions as a phospholipid-lysophospholipid transacylase. It catalyzes remodeling of immature cardiolipin to its mature composition containing a predominance of tetralinoleoyl moieties. Several different isoforms of the tafazzin protein are produced from the TAFAZZIN gene. A long form and a short form of each of these isoforms is produced; the short form lacks a hydrophobic leader sequence and may exist as a cytoplasmic protein rather than being membrane-bound. Other alternatively spliced transcripts have been described but the full-length nature of all these transcripts is not known. Most isoforms are found in all tissues, but some are found only in certain types of cells. Mutations in the TAFAZZIN gene have been associated with mitochondrial deficiency, Barth syndrome, dilated cardiomyopathy (DCM), hypertrophic DCM, endocardial fibroelastosis, left ventricular noncompaction (LVNC), breast cancer, papillary thyroid carcinoma, non-small cell lung cancer, glioma, gastric cancer, thyroid neoplasms, and rectal cancer.

<span class="mw-page-title-main">2-Hydroxyglutaric aciduria</span> Medical condition

2-hydroxyglutaric aciduria is a rare neurometabolic disorder characterized by the significantly elevated levels of hydroxyglutaric acid in one's urine. It is either autosomal recessive or autosomal dominant.

<span class="mw-page-title-main">HADHB</span> Protein-coding gene in the species Homo sapiens

Trifunctional enzyme subunit beta, mitochondrial (TP-beta) also known as 3-ketoacyl-CoA thiolase, acetyl-CoA acyltransferase, or beta-ketothiolase is an enzyme that in humans is encoded by the HADHB gene.

<span class="mw-page-title-main">MT-ATP8</span> Mitochondrial protein-coding gene whose product is involved in ATP synthesis

MT-ATP8 is a mitochondrial gene with the full name 'mitochondrially encoded ATP synthase membrane subunit 8' that encodes a subunit of mitochondrial ATP synthase, ATP synthase Fo subunit 8. This subunit belongs to the Fo complex of the large, transmembrane F-type ATP synthase. This enzyme, which is also known as complex V, is responsible for the final step of oxidative phosphorylation in the electron transport chain. Specifically, one segment of ATP synthase allows positively charged ions, called protons, to flow across a specialized membrane inside mitochondria. Another segment of the enzyme uses the energy created by this proton flow to convert a molecule called adenosine diphosphate (ADP) to ATP. Subunit 8 differs in sequence between Metazoa, plants and Fungi.

<span class="mw-page-title-main">MT-ATP6</span> Mitochondrial protein-coding gene whose product is involved in ATP synthesis

MT-ATP6 is a mitochondrial gene with the full name 'mitochondrially encoded ATP synthase membrane subunit 6' that encodes the ATP synthase Fo subunit 6. This subunit belongs to the Fo complex of the large, transmembrane F-type ATP synthase. This enzyme, which is also known as complex V, is responsible for the final step of oxidative phosphorylation in the electron transport chain. Specifically, one segment of ATP synthase allows positively charged ions, called protons, to flow across a specialized membrane inside mitochondria. Another segment of the enzyme uses the energy created by this proton flow to convert a molecule called adenosine diphosphate (ADP) to ATP. Mutations in the MT-ATP6 gene have been found in approximately 10 to 20 percent of people with Leigh syndrome.

<span class="mw-page-title-main">Cytochrome c oxidase subunit I</span> Enzyme of the respiratory chain encoded by the mitochondrial genome

Cytochrome c oxidase I (COX1) also known as mitochondrially encoded cytochrome c oxidase I (MT-CO1) is a protein that is encoded by the MT-CO1 gene in eukaryotes. The gene is also called COX1, CO1, or COI. Cytochrome c oxidase I is the main subunit of the cytochrome c oxidase complex. In humans, mutations in MT-CO1 have been associated with Leber's hereditary optic neuropathy (LHON), acquired idiopathic sideroblastic anemia, Complex IV deficiency, colorectal cancer, sensorineural deafness, and recurrent myoglobinuria.

<span class="mw-page-title-main">ATP5F1A</span> Protein-coding gene in the species Homo sapiens

ATP synthase F1 subunit alpha, mitochondrial is an enzyme that in humans is encoded by the ATP5F1A gene.

<span class="mw-page-title-main">MT-CYB</span> A mitochondrial protein-coding gene whose product is involved in the respiratory chain

Cytochrome b is a protein that in humans is encoded by the MT-CYB gene. Its gene product is a subunit of the respiratory chain protein ubiquinol–cytochrome c reductase, which consists of the products of one mitochondrially encoded gene, MT-CYB, and ten nuclear genes—UQCRC1, UQCRC2, CYC1, UQCRFS1, UQCRB, "11kDa protein", UQCRH, Rieske protein presequence, "cyt c1 associated protein", and Rieske-associated protein.

<span class="mw-page-title-main">BCS1L</span> Protein-coding gene in the species Homo sapiens

Mitochondrial chaperone BCS1 (BCS1L), also known as BCS1 homolog, ubiquinol-cytochrome c reductase complex chaperone (h-BCS1), is a protein that in humans is encoded by the BCS1L gene. BCS1L is a chaperone protein involved in the assembly of Ubiquinol Cytochrome c Reductase, which is located in the inner mitochondrial membrane and is part of the electron transport chain. Mutations in this gene are associated with mitochondrial complex III deficiency, GRACILE syndrome, and Bjoernstad syndrome.

<span class="mw-page-title-main">Phosphate carrier protein, mitochondrial</span>

Phosphate carrier protein, mitochondrial is a protein that in humans is encoded by the SLC25A3 gene. The encoded protein is a transmembrane protein located in the mitochondrial inner membrane and catalyzes the transport of phosphate ions across it for the purpose of oxidative phosphorylation. There are two significant isoforms of this gene expressed in human cells, which differ slightly in structure and function. Mutations in this gene can cause mitochondrial phosphate carrier deficiency (MPCD), a fatal disorder of oxidative phosphorylation symptomized by lactic acidosis, neonatal hypotonia, hypertrophic cardiomyopathy, and death within the first year of life.

<span class="mw-page-title-main">NDUFS1</span> Protein-coding gene in the species Homo sapiens

NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial (NDUFS1) is an enzyme that in humans is encoded by the NDUFS1 gene. The encoded protein, NDUFS1, is the largest subunit of complex I, located on the inner mitochondrial membrane, and is important for mitochondrial oxidative phosphorylation. Mutations in this gene are associated with complex I deficiency.

<span class="mw-page-title-main">ATP5E</span> Protein-coding gene in the species Homo sapiens

ATP synthase F1 subunit epsilon, mitochondrial is an enzyme that in humans is encoded by the ATP5F1E gene. The protein encoded by ATP5F1E is a subunit of ATP synthase, also known as Complex V. Variations of this gene have been associated with mitochondrial complex V deficiency, nuclear 3 (MC5DN3) and Papillary Thyroid Cancer.

<span class="mw-page-title-main">UQCRC2</span> Protein-coding gene in the species Homo sapiens

Cytochrome b-c1 complex subunit 2, mitochondrial (UQCRC2), also known as QCR2, UQCR2, or MC3DN5 is a protein that in humans is encoded by the UQCRC2 gene. The product of UQCRC2 is a subunit of the respiratory chain protein Ubiquinol Cytochrome c Reductase, which consists of the products of one mitochondrially encoded gene, MTCYTB and ten nuclear genes: UQCRC1, UQCRC2, Cytochrome c1, UQCRFS1, UQCRB, "11kDa protein", UQCRH, Rieske Protein presequence, "cyt. c1 associated protein", and "Rieske-associated protein." Defects in UQCRC2 are associated with mitochondrial complex III deficiency, nuclear, type 5.

<span class="mw-page-title-main">TIMM50</span> Protein-coding gene in the species Homo sapiens

Mitochondrial import inner membrane translocase subunit TIM50 is a protein that in humans is encoded by the TIMM50 gene. Tim50 is a subunit of the Tim23 translocase complex in the inner mitochondrial membrane. Mutations in TIMM50 can lead to epilepsy, severe intellectual disability, and 3-methylglutaconic aciduria. TIMM50 expression is increased in breast cancer cells and decreased in hypertrophic hearts.

Transmembrane protein 126B is a protein that in humans is encoded by the TMEM126B gene. TMEM126B is a mitochondrial transmembrane protein which is a component of the mitochondrial complex I assembly complex. The TMEM126B gene is conserved in mammals. The encoded protein serves as an assembly factor that is required for formation of the membrane arm of the complex. It interacts with NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 13. Naturally occurring mutations in this gene are associated with isolated complex I deficiency. A pseudogene of this gene has been defined on chromosome 9.

<span class="mw-page-title-main">SERAC1</span> Protein-coding gene in the species Homo sapiens

Serine active site-containing protein 1, or Protein SERAC1 is a protein in humans that is encoded by the SERAC1 gene. The protein encoded by this gene is a phosphatidylglycerol remodeling protein found at the interface of mitochondria and endoplasmic reticula, where it mediates phospholipid exchange. The encoded protein plays a major role in mitochondrial function and intracellular cholesterol trafficking. Defects in this gene are a cause of 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like syndrome (MEGDEL). Two transcript variants, one protein-coding and the other non-protein coding, have been found for this gene.

<span class="mw-page-title-main">NUBPL</span> Protein-coding gene in the species Homo sapiens

Iron-sulfur protein NUBPL (IND1) also known as nucleotide-binding protein-like (NUBPL), IND1 homolog, Nucleotide-binding protein-like or huInd1 is an iron-sulfur (Fe/S) protein that, in humans, is encoded by the NUBPL gene, located on chromosome 14q12. It has an early role in the assembly of the mitochondrial complex I assembly pathway.

<span class="mw-page-title-main">UQCC2</span> Protein-coding gene in the species Homo sapiens

Ubiquinol-cytochrome c reductase complex assembly factor 2 is a protein that in humans is encoded by the UQCC2 gene. Located in the mitochondrial nucleoid, this protein is a complex III assembly factor, playing a role in cytochrome b biogenesis along with the UQCC1 protein. It regulates insulin secretion and mitochondrial ATP production and oxygen consumption. In the sole recorded case, a mutation in the UQCC2 gene caused Complex III deficiency, characterized by intrauterine growth retardation, neonatal lactic acidosis, and renal tubular dysfunction.

<span class="mw-page-title-main">COA3</span> Protein-coding gene in the species Homo sapiens

Cytochrome c oxidase assembly factor 3, also known as Coiled-coil domain-containing protein 56, or Mitochondrial translation regulation assembly intermediate of cytochrome c oxidase protein of 12 kDa is a protein that in humans is encoded by the COA3 gene. This gene encodes a member of the cytochrome c oxidase assembly factor family. Studies of a related gene in fly suggest that the encoded protein is localized to mitochondria and is essential for cytochrome c oxidase function.

<span class="mw-page-title-main">COX14</span> Protein-coding gene in humans

Cytochrome c oxidase assembly factor COX14 is a protein that in humans is encoded by the COX14 gene. This gene encodes a small single-pass transmembrane protein that localizes to mitochondria. This protein may play a role in coordinating the early steps of cytochrome c oxidase subunit assembly and, in particular, the synthesis and assembly of the COX I subunit of the holoenzyme. Mutations in this gene have been associated with mitochondrial complex IV deficiency. Alternative splicing results in multiple transcript variants.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000175606 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000025940 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 4 "Entrez Gene: Transmembrane protein 70" . Retrieved 2018-08-14.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  6. 1 2 3 Online Mendelian Inheritance in Man (OMIM): TMEM70 - 612418
  7. 1 2 3 Cameron JM, Levandovskiy V, Mackay N, Ackerley C, Chitayat D, Raiman J, et al. (January 2011). "Complex V TMEM70 deficiency results in mitochondrial nucleoid disorganization". Mitochondrion. 11 (1): 191–9. doi:10.1016/j.mito.2010.09.008. PMID   20920610.
  8. Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, et al. (October 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC   4076475 . PMID   23965338.
  9. "TMEM70 - Transmembrane protein 70, mitochondrial". Cardiac Organellar Protein Atlas Knowledgebase (COPaKB).
  10. "TMEM70 - Transmembrane protein 70, mitochondrial precursor - Homo sapiens (Human) - TMEM70 gene & protein". www.uniprot.org. Retrieved 2018-08-15. Creative Commons by small.svg  This article incorporates text available under the CC BY 4.0 license.
  11. 1 2 "UniProt: the universal protein knowledgebase". Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC   5210571 . PMID   27899622.
  12. Cízková A, Stránecký V, Mayr JA, Tesarová M, Havlícková V, Paul J, et al. (November 2008). "TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy". Nature Genetics. 40 (11): 1288–90. doi:10.1038/ng.246. PMID   18953340. S2CID   34536246.
  13. Catteruccia M, Verrigni D, Martinelli D, Torraco A, Agovino T, Bonafé L, et al. (March 2014). "Persistent pulmonary arterial hypertension in the newborn (PPHN): a frequent manifestation of TMEM70 defective patients". Molecular Genetics and Metabolism. 111 (3): 353–359. doi:10.1016/j.ymgme.2014.01.001. PMID   24485043.
  14. Honzík T, Tesarová M, Mayr JA, Hansíková H, Jesina P, Bodamer O, et al. (April 2010). "Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation". Archives of Disease in Childhood. 95 (4): 296–301. doi:10.1136/adc.2009.168096. hdl: 1854/LU-987464 . PMID   20335238. S2CID   2946094.
  15. Spiegel R, Khayat M, Shalev SA, Horovitz Y, Mandel H, Hershkovitz E, et al. (March 2011). "TMEM70 mutations are a common cause of nuclear encoded ATP synthase assembly defect: further delineation of a new syndrome". Journal of Medical Genetics. 48 (3): 177–82. doi:10.1136/jmg.2010.084608. PMID   21147908. S2CID   8699153.
  16. IntAct. "TMEM70 interactions". www.ebi.ac.uk. Retrieved 2018-08-16.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.