The Takahashi Taxol total synthesis published by Takashi Takahashi in 2006 is one of several methods in taxol total synthesis. [1] The method starts from geraniol and differs from the other 6 published methods that it is a formal synthesis (the final product is baccatin III which lacks the amide tail found in taxol itself) and that it is racemic (the product baccatin III is optically inactive). A key feature of the published procedure is that several synthetic steps (construction of rings A, B and C) were performed in an automated synthesizer on a scale up to 300 gram and that purification steps were also automated.
Ring A was synthesised starting from geraniol 1 and involved acylation (acetic anhydride, DMAP, Et3N) to 2, epoxidation (N-bromosuccinimide, tBuOH/H2O then triethylamine) to 3, radical cyclisation (titanocene dichloride, manganese, triethylborane, 2,6-lutidine) to 4, alcohol protection (ethyl vinyl ether, camphorsulfonic acid) to 5, alcohol deprotection (NaOH, MeOH/THF/H2O) to alcohol 6, Parikh-Doering oxidation to aldehyde 7, isomerization (DBU) to enone 8, organic reduction (sodium borohydride) to alcohol 9, alcohol protection (TBSCl, Et3N) to TBS ether 10, hydrazone formation (H2NNHTs) to 11 and finally vinyl bromide formation (tBuLi, 1,2-Dibromoethane) in 12.
Scheme 1. A ring synthesis |
---|
The synthesis of ring C also required hydroxygeranyl acetate 2. Subsequent steps were allylic oxidation (SeO2, tBuO2H, salicylic acid) to aldehyde 13, then carbonyl reduction (NaBH4) to alcohol 14, then epoxidation (VO(acac)2, tBuO2H) to 15, then alcohol protection (MPM trichloroacetimidate) to MPM ether 16, then radical cyclisation (titanocene dichloride, manganese, triethylborane, TMSCl, K2CO3) to alcohol 17, alcohol protection (BOMCl, DIPEA) to benzyloxymethyl ether 18, acetate hydrolysis (NaOH) and Ley oxidation to aldehyde 19.
Scheme 2. C ring synthesis |
---|
Ring A (12) and ring C (19) reacted together to alcohol 20 in a Shapiro reaction (tBuLi, CeCl3) in a similar way as in the Nicolaou Taxol total synthesis. Subsequent steps were epoxidation (VO(acac)2, tBuO2H) to 21, reduction (LiAlH4) to the diol and alcohol protection (aqueous KOH, BnBr, Bu4NHSO4) to benzyl ether 22, alcohol protection (Me2SiHCl, imidazole) and oxidation (DDQ) to DMS ether 23, tosylation (TsCl, DMAP) to 24, deprotection to diol (TBAF) and reprotection (TMSOTf, 2,6-lutidine, DIPEA) as TMS ether 25, Ley oxidation to aldehyde 26, cyanohydrin formation (TMSCN, 18-crown-6, KCN) and alcohol protection (ethyl vinyl ether, camphorsulfonic acid) to EE ether 27.
Scheme 3. B ring synthesis |
---|
Cyclisation of 27 took place by alkylation (LiN(TMS)2, dioxane, microwave irradiation) to tricycle 28. Subsequent steps were cyanohydrin hydrolysis (camphorsulfonic acid), TMS deprotection (KOH) and allylic oxidation (SeO2, tBuO2H, salicylic acid) to ketone 29, then Upjohn dihydroxylation to triol 30, then acylation (AcCl, DMAP) and mesitylation (MsCl, DMAP) to 31, then benzyl group and benzyloxy group removal (hydrogenation / Palladium on carbon) followed by carbonate protection (triphosgene, pyridine) to 32, then secondary alcohol protection (TESCl, pyridine) and primary alcohol deprotection (potassium carbonate) to diol 33, then oxetane formation (DIPEA, HMPA) to 34, then acylation (Ac2O, DMAP), then benzoylation (phenyllithium) to 35, then oxidation (tBuOK, (PhSeO)2O, THF) to the acyloin 36, then isomerisation (tBuOK) and acylation (Ac2O, DMAP, pyr) to 37, then oxidation at the allylic position (PCC, celite, NaOAc, benzene), ketone group oxidation (NaBH4) and TES protecting group removal (HF·pyr) to baccatin III (38).
Scheme 4. D ring synthesis |
---|
Elias James "E.J." Corey is an American organic chemist. In 1990, he won the Nobel Prize in Chemistry "for his development of the theory and methodology of organic synthesis", specifically retrosynthetic analysis. Regarded by many as one of the greatest living chemists, he has developed numerous synthetic reagents, methodologies and total syntheses and has advanced the science of organic synthesis considerably.
The Sharpless epoxidation reaction is an enantioselective chemical reaction to prepare 2,3-epoxyalcohols from primary and secondary allylic alcohols. The oxidizing agent is tert-butyl hydroperoxide. The method relies on a catalyst formed from titanium tetra(isopropoxide) and diethyl tartrate.
A diol is a chemical compound containing two hydroxyl groups. An aliphatic diol is also called a glycol. This pairing of functional groups is pervasive, and many subcategories have been identified.
A protecting group or protective group is introduced into a molecule by chemical modification of a functional group to obtain chemoselectivity in a subsequent chemical reaction. It plays an important role in multistep organic synthesis.
Pyridinium chlorochromate (PCC) is a yellow-orange salt with the formula [C5H5NH]+[CrO3Cl]−. It is a reagent in organic synthesis used primarily for oxidation of alcohols to form carbonyls. A variety of related compounds are known with similar reactivity. PCC offers the advantage of the selective oxidation of alcohols to aldehydes or ketones, whereas many other reagents are less selective.
In organic chemistry a methylthiomethyl (MTM) ether is a protective group for hydroxyl groups. Hydroxyl groups are present in many chemical compounds and they must be protected during oxidation, acylation, halogenation, dehydration and other reactions to which they are susceptible.
The Nicolaou Taxol total synthesis, published by K. C. Nicolaou and his group in 1994 concerns the total synthesis of taxol. Taxol is an important drug in the treatment of cancer but also expensive because the compound is harvested from a scarce resource, namely the pacific yew.
Silyl ethers are a group of chemical compounds which contain a silicon atom covalently bonded to an alkoxy group. The general structure is R1R2R3Si−O−R4 where R4 is an alkyl group or an aryl group. Silyl ethers are usually used as protecting groups for alcohols in organic synthesis. Since R1R2R3 can be combinations of differing groups which can be varied in order to provide a number of silyl ethers, this group of chemical compounds provides a wide spectrum of selectivity for protecting group chemistry. Common silyl ethers are: trimethylsilyl (TMS), tert-butyldiphenylsilyl (TBDPS), tert-butyldimethylsilyl (TBS/TBDMS) and triisopropylsilyl (TIPS). They are particularly useful because they can be installed and removed very selectively under mild conditions.
The Danishefsky Taxol total synthesis in organic chemistry is an important third Taxol synthesis published by the group of Samuel Danishefsky in 1996 two years after the first two efforts described in the Holton Taxol total synthesis and the Nicolaou Taxol total synthesis. Combined they provide a good insight in the application of organic chemistry in total synthesis.
Trimethylsilyl chloride, also known as chlorotrimethylsilane is an organosilicon compound (silyl halide), with the formula (CH3)3SiCl, often abbreviated Me3SiCl or TMSCl. It is a colourless volatile liquid that is stable in the absence of water. It is widely used in organic chemistry.
The Holton Taxol total synthesis, published by Robert A. Holton and his group at Florida State University in 1994, was the first total synthesis of Taxol.
The article concerns the total synthesis of galanthamine, a drug used for the treatment of mild to moderate Alzheimer's disease.
In organic chemistry, kinetic resolution is a means of differentiating two enantiomers in a racemic mixture. In kinetic resolution, two enantiomers react with different reaction rates in a chemical reaction with a chiral catalyst or reagent, resulting in an enantioenriched sample of the less reactive enantiomer. As opposed to chiral resolution, kinetic resolution does not rely on different physical properties of diastereomeric products, but rather on the different chemical properties of the racemic starting materials. This enantiomeric excess (ee) of the unreacted starting material continually rises as more product is formed, reaching 100% just before full completion of the reaction. Kinetic resolution relies upon differences in reactivity between enantiomers or enantiomeric complexes. Kinetic resolution is a concept in organic chemistry and can be used for the preparation of chiral molecules in organic synthesis. Kinetic resolution reactions utilizing purely synthetic reagents and catalysts are much less common than the use of enzymatic kinetic resolution in application towards organic synthesis, although a number of useful synthetic techniques have been developed in the past 30 years.
Lead(IV) acetate or lead tetraacetate is a chemical compound with chemical formula Pb(C2H3O2)4. It is a colorless solid that is soluble in nonpolar organic solvents, indicating that it is not a salt. It is degraded by moisture and is typically stored with additional acetic acid. The compound is used in organic synthesis.
Wender Taxol total synthesis in organic chemistry describes a Taxol total synthesis by the group of Paul Wender at Stanford University published in 1997. This synthesis has much in common with the Holton Taxol total synthesis in that it is a linear synthesis starting from a naturally occurring compound with ring construction in the order A,B,C,D. The Wender effort is shorter by approximately 10 steps.
The Kuwajima Taxol total synthesis by the group of Isao Kuwajima of the Tokyo Institute of Technology is one of several efforts in taxol total synthesis published in the 1990s. The total synthesis of Taxol is considered a landmark in organic synthesis.
The Mukaiyama taxol total synthesis published by the group of Teruaki Mukaiyama of the Tokyo University of Science between 1997 and 1999 was the 6th successful taxol total synthesis. The total synthesis of Taxol is considered a hallmark in organic synthesis.
Pancratistatin (PST) is a natural compound initially extracted from spider lily, a Hawaiian native plant of the family Amaryllidaceae (AMD).
Strychnine total synthesis in chemistry describes the total synthesis of the complex biomolecule strychnine. The first reported method by the group of Robert Burns Woodward in 1954 is considered a classic in this research field.
Oxidation with chromium(VI) complexes involves the conversion of alcohols to carbonyl compounds or more highly oxidized products through the action of molecular chromium(VI) oxides and salts. The principal reagents are Collins reagent, PDC, and PCC. These reagents represent improvements over inorganic chromium(VI) reagents such as Jones reagent.