Thauera

Last updated

Thauera
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Thauera

Macy et al. 1993
Type species
Thauera selenatis
Species

See text

Thauera is a genus of Gram-negative bacteria in the family Zoogloeaceae of the order Rhodocyclales of the Betaproteobacteria . The genus is named for the German microbiologist Rudolf Thauer. Most species of this genus are motile by flagella and are mostly rod-shaped. [2] The species occur in wet soil and polluted freshwater. [2]

Species

The genus includes the following species:

Related Research Articles

<span class="mw-page-title-main">Pseudomonadota</span> Phylum of Gram-negative bacteria

Pseudomonadota is a major phylum of Gram-negative bacteria. The renaming of several prokaryote phyla in 2021, including Pseudomonadota, remains controversial among microbiologists, many of whom continue to use the earlier name Proteobacteria, of long standing in the literature. The phylum Proteobacteria includes a wide variety of pathogenic genera, such as Escherichia, Salmonella, Vibrio, Yersinia, Legionella, and many others. Others are free-living (non-parasitic) and include many of the bacteria responsible for nitrogen fixation.

The Rhodocyclaceae are a family of gram-negative bacteria. They are given their own order in the beta subgroup of Pseudomonadota, and include many genera previously assigned to the family Pseudomonadaceae.

<span class="mw-page-title-main">Rhodocyclales</span> Order of bacteria

The Rhodocyclales are an order of the class Betaproteobacteria in the phylum "Pseudomonadota". Following a major reclassification of the class in 2017, the previously monofamilial order was split into three families:

The Hydrogenophilaceae are a family of the Hydrogenophilalia, with two genera – Hydrogenophilus and Tepidiphilus. Like all Pseudomonadota, they are Gram-negative. All known species are thermophilic, growing around 50 °C and using molecular hydrogen or organic molecules as their source of electrons to support growth - some species are autotrophs.

Thiobacillus is a genus of Gram-negative Betaproteobacteria. Thiobacillus thioparus is the type species of the genus, and the type strain thereof is the StarkeyT strain, isolated by Robert Starkey in the 1930s from a field at Rutgers University in the United States of America. While over 30 "species" have been named in this genus since it was defined by Martinus Beijerinck in 1904,, most names were never validly or effectively published. The remainder were either reclassified into Paracoccus, Starkeya ; Sulfuriferula, Annwoodia, Thiomonas ; Halothiobacillus, Guyparkeria, or Thermithiobacillus or Acidithiobacillus. The very loosely defined "species" Thiobacillus trautweinii was where sulfur oxidising heterotrophs and chemolithoheterotrophs were assigned in the 1910-1960s era, most of which were probably Pseudomonas species. Many species named in this genus were never deposited in service collections and have been lost.

<span class="mw-page-title-main">Burkholderiaceae</span> Family of bacteria

The Burkholderiaceae are a family of bacteria included in the order Burkholderiales. It includes some pathogenic species, such as Burkholderia mallei (glanders) and Burkholderia pseudomallei (melioidosis).

<span class="mw-page-title-main">Acidithiobacillales</span> Order of bacteria

The Acidithiobacillales are an order of bacteria within the class Acidithiobacillia and comprises the genera Acidithiobacillus and Thermithiobacillus. Originally, both were included in the genus Thiobacillus, but they are not related to the type species, which belongs to the Betaproteobacteria.

<span class="mw-page-title-main">Betaproteobacteria</span> Class of bacteria

Betaproteobacteria are a class of Gram-negative bacteria, and one of the eight classes of the phylum Pseudomonadota.

<i>Ensifer</i> (bacterium) Genus of bacteria

Ensifer is a genus of nitrogen-fixing bacteria (rhizobia), three of which have been sequenced.

<span class="mw-page-title-main">Spirillaceae</span> Family of bacteria

Spirillaceae is a family in the order Nitrosomonadales in the class Betaproteobacteria of the bacteria.

Dechloromonas is a genus in the phylum Pseudomonadota (Bacteria).

Azoarcus is a genus of nitrogen-fixing bacteria. Species in this genus are usually found in contaminated water, as they are involved in the degradation of some contaminants, commonly inhabiting soil. These bacteria have also been found growing in the endophytic compartment of some rice species and other grasses. The genus is within the family Zoogloeaceae in the Rhodocyclales of the Betaproteobacteria.

Azonexus is a genus of gram-negative, non-spore-forming, highly motile bacteria that is the type genus of the family Azonexaceae which is in the order Rhodocyclales of the class Betaproteobacteria.

Azovibrio is a genus of bacteria from the order Rhodocyclales which belongs to the class of Betaproteobacteria, but the family to which it belongs is uncertain since it falls in between the Zoogloeaceae and the Rhodocyclaceae. Up to now there is only on species known.

Ferribacterium is a genus of bacteria from the family of Rhodocyclaceae which belongs to the class of Betaproteobacteria. Up to now there is only one species of this genus known.

<i>Zoogloea</i> Genus of bacteria

Zoogloea, also known as zoöglœa, is a genus of gram-negative, aerobic, rod-shaped bacteria from the family of Zoogloeaceae in the Rhodocyclales of the class Betaproteobacteria.

The genus Annwoodia was named in 2017 to circumscribe an organism previously described as a member of the genus Thiobacillus, Thiobacillus aquaesulis - the type and only species is Annwoodia aquaesulis, which was isolated from the geothermal waters of the Roman Baths in the city of Bath in the United Kingdom by Ann P. Wood and Donovan P. Kelly of the University of Warwick - the genus was subsequently named to honour Wood's contribution to microbiology. The genus falls within the family Thiobacillaceae along with Thiobacillus and Sulfuritortus, both of which comprise autotrophic organisms dependent on thiosulfate, other sulfur oxyanions and sulfide as electron donors for chemolithoheterotrophic growth. Whilst Annwoodia spp. and Sulfuritortus spp. are thermophilic, Thiobacillus spp. are mesophilic.

Ann Patricia Wood is a retired British biochemist and bacteriologist who specialized in the ecology, taxonomy and physiology of sulfur-oxidizing chemolithoautotrophic bacteria and how methylotrophic bacteria play a role in the degradation of odour causing compounds in the human mouth, vagina and skin. The bacterial genus Annwoodia was named to honor her contributions to microbial research in 2017.

Evansella is a genus of Gram-positive rod-shaped bacteria in the family Bacillaceae within the order Bacillales. The type species for this genus is Evansella cellulosilytica.

Alkalicoccus is a genus of Gram-Positive rod-shaped bacteria in the family Bacillaceae from the order Bacillales. The type species of this genus is Alkalicoccus saliphilus.

References

  1. Boden, R; Hutt, LP, Rae AW (2017). "Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the 'Proteobacteria', and four new families within the orders Nitrosomonadales and Rhodocyclales". International Journal of Systematic and Evolutionary Microbiology. 67 (5): 1191–1205. doi: 10.1099/ijsem.0.001927 . PMID   28581923.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. 1 2 Garrity, George M.; Brenner, Don J.; Krieg, Noel R.; Staley, James T. (eds.) (2005). Bergey's Manual of Systematic Bacteriology, Volume Two: The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. New York, New York: Springer. ISBN   978-0-387-24145-6.
  3. Pal, D; Bhardwaj, A; Sudan, SK; Kaur, N; Kumari, M; Bisht, B; Vyas, B; Krishnamurthi, S; Mayilraj, S (January 2018). "Thauera propionica sp. nov., isolated from downstream sediment sample of the river Ganges, Kanpur, India". International Journal of Systematic and Evolutionary Microbiology. 68 (1): 341–346. doi: 10.1099/ijsem.0.002508 . PMID   29185938. S2CID   46820334.