Thiocyanate isomerase

Last updated
thiocyanate isomerase
Identifiers
EC no. 5.99.1.1
CAS no. 9023-71-6
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a thiocyanate isomerase (EC 5.99.1.1) is an enzyme that catalyzes the chemical reaction

benzyl isothiocyanate benzyl thiocyanate

Hence, this enzyme has one substrate, benzyl isothiocyanate, and one product, benzyl thiocyanate.

This enzyme belongs to the family of isomerases, specifically those other isomerases sole sub-subclass for isomerases that do not belong in the other subclasses. The systematic name of this enzyme class is benzyl-thiocyanate isomerase. This enzyme is also called isothiocyanate isomerase.

Related Research Articles

<span class="mw-page-title-main">Isothiocyanate</span> Chemical group (–N=C=S)

In organic chemistry, isothiocyanate is the functional group −N=C=S, formed by substituting the oxygen in the isocyanate group with a sulfur. Many natural isothiocyanates from plants are produced by enzymatic conversion of metabolites called glucosinolates. These natural isothiocyanates, such as allyl isothiocyanate, are also known as mustard oils. An artificial isothiocyanate, phenyl isothiocyanate, is used for amino acid sequencing in the Edman degradation.

<span class="mw-page-title-main">Allyl isothiocyanate</span> Chemical compound

Allyl isothiocyanate (AITC) is an organosulfur compound (formula CH2CHCH2NCS). The colorless oil is responsible for the pungent taste of mustard, radish, horseradish, and wasabi. This pungency and the lachrymatory effect of AITC are mediated through the TRPA1 and TRPV1 ion channels. It is slightly soluble in water, but more soluble in most organic solvents.

<span class="mw-page-title-main">Glucosinolate</span> Class of chemical compounds

Glucosinolates are natural components of many pungent plants such as mustard, cabbage, and horseradish. The pungency of those plants is due to mustard oils produced from glucosinolates when the plant material is chewed, cut, or otherwise damaged. These natural chemicals most likely contribute to plant defence against pests and diseases, and impart a characteristic bitter flavor property to cruciferous vegetables.

<span class="mw-page-title-main">Guanidinium thiocyanate</span> Chemical compound

Guanidinium thiocyanate(GTC) or guanidinium isothiocyanate (GITC) is a chemical compound used as a general protein denaturant, being a chaotropic agent, although it is most commonly used as a nucleic acid protector in the extraction of DNA and RNA from cells.

<span class="mw-page-title-main">Sinigrin</span> Chemical compound

Sinigrin or allyl glucosinolate is a glucosinolate that belongs to the family of glucosides found in some plants of the family Brassicaceae such as Brussels sprouts, broccoli, and the seeds of black mustard. Whenever sinigrin-containing plant tissue is crushed or otherwise damaged, the enzyme myrosinase degrades sinigrin to a mustard oil, which is responsible for the pungent taste of mustard and horseradish. Seeds of white mustard, Sinapis alba, give a less pungent mustard because this species contains a different glucosinolate, sinalbin.

<span class="mw-page-title-main">Potassium thiocyanate</span> Chemical compound

Potassium thiocyanate is the chemical compound with the molecular formula KSCN. It is an important salt of the thiocyanate anion, one of the pseudohalides. The compound has a low melting point relative to most other inorganic salts.

<span class="mw-page-title-main">Glucobrassicin</span> Chemical compound

Glucobrassicin is a type of glucosinolate that can be found in almost all cruciferous plants, such as cabbages, broccoli, mustards, and woad. As for other glucosinolates, degradation by the enzyme myrosinase is expected to produce an isothiocyanate, indol-3-ylmethylisothiocyanate. However, this specific isothiocyanate is expected to be highly unstable, and has indeed never been detected. The observed hydrolysis products when isolated glucobrassicin is degraded by myrosinase are indole-3-carbinol and thiocyanate ion, which are envisioned to result from a rapid reaction of the unstable isothiocyanate with water. However, a large number of other reaction products are known, and indole-3-carbinol is not the dominant degradation product when glucosinolate degradation takes place in crushed plant tissue or in intact plants.

<span class="mw-page-title-main">Rhodanese</span> Mitochondrial enzyme which breaks down cyanide

Rhodanese, also known as rhodanase, thiosulfate sulfurtransferase, thiosulfate cyanide transsulfurase, and thiosulfate thiotransferase, is a mitochondrial enzyme that detoxifies cyanide (CN) by converting it to thiocyanate (SCN).

<span class="mw-page-title-main">Myrosinase</span>

Myrosinase is a family of enzymes involved in plant defense against herbivores, specifically the mustard oil bomb. The three-dimensional structure has been elucidated and is available in the PDB.

<span class="mw-page-title-main">Sinalbin</span> Chemical compound

Sinalbin is a glucosinolate found in the seeds of white mustard, Sinapis alba, and in many wild plant species. In contrast to mustard from black mustard seeds which contain sinigrin, mustard from white mustard seeds has only a weakly pungent taste.

In enzymology, an aconitate Δ-isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, a cholestenol Δ-isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, a L-dopachrome isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, a L-rhamnose isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, a mannose isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, a methylitaconate Δ-isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, an oxaloacetate tautomerase is an enzyme that catalyzes the chemical reaction

In enzymology, a vinylacetyl-CoA Delta-isomerase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Glucotropaeolin</span> Chemical compound

Glucotropaeolin or benzyl glucosinolate is a glucosinolate found in cruciferous vegetables, particularly garden cress. Upon enzymatic activity, it is transformed into benzyl isothiocyanate, which contributes to the characteristic flavor of these brassicas.

<span class="mw-page-title-main">Organic thiocyanates</span>

Organic thiocyanates are organic compounds containing the functional group RSCN. the organic group is attached to sulfur: R−S−C≡N has a S–C single bond and a C≡N triple bond.

References