Timeline of theoretical physics

Last updated

This timeline of theoretical physics lists important developments in theoretical physics that have either been experimentally confirmed or significantly influence current thinking in modern physics.

Contents

17th century

18th century

19th century

20th century

21st century

See also

Related Research Articles

In physics, the fundamental interactions, also known as fundamental forces, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the gravitational and electromagnetic interactions, which produce significant long-range forces whose effects can be seen directly in everyday life, and the strong and weak interactions, which produce forces at minuscule, subatomic distances and govern nuclear interactions. Some scientists hypothesize that a fifth force might exist, but these hypotheses remain speculative.

Elementary particle Subatomic particle having no known substructure

In particle physics, an elementary particle or fundamental particle is a subatomic particle with no sub structure, i.e. it is not composed of other particles. Particles currently thought to be elementary include the fundamental fermions, which generally are "matter particles" and "antimatter particles", as well as the fundamental bosons, which generally are "force particles" that mediate interactions among fermions. A particle containing two or more elementary particles is called a composite particle.

History of physics aspect of history

Physics is a branch of science whose primary objects of study are matter and energy. Discoveries of physics find applications throughout the natural sciences and in technology, since matter and energy are the basic constituents of the natural world. Some other domains of study—more limited in their scope—may be considered branches that have split off from physics to become sciences in their own right. Physics today may be divided loosely into classical physics and modern physics.

Theory of everything Hypothetical single, all-encompassing, coherent theoretical framework of physics

A theory of everything, final theory, ultimate theory, or master theory is a hypothetical single, all-encompassing, coherent theoretical framework of physics that fully explains and links together all physical aspects of the universe. Finding a TOE is one of the major unsolved problems in physics. String theory and M-theory have been proposed as theories of everything. Over the past few centuries, two theoretical frameworks have been developed that, together, most closely resemble a TOE. These two theories upon which all modern physics rests are general relativity and quantum mechanics. General relativity is a theoretical framework that only focuses on gravity for understanding the universe in regions of both large scale and high mass: stars, galaxies, clusters of galaxies, etc. On the other hand, quantum mechanics is a theoretical framework that only focuses on three non-gravitational forces for understanding the universe in regions of both small scale and low mass: sub-atomic particles, atoms, molecules, etc. Quantum mechanics successfully implemented the Standard Model that describes the three non-gravitational forces -- strong nuclear, weak nuclear, and electromagnetic force -- as well as all observed elementary particles.

Standard Model Theory of particle physics

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe, as well as classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists around the world, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, confirmation of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

A timeline of atomic and subatomic physics.

A timeline of events related to thermodynamics.

Mathematical physics Application of mathematical methods to problems in physics

Mathematical physics refers to the development of mathematical methods for application to problems in physics. The Journal of Mathematical Physics defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories".

Subatomic particle Particle whose size or mass is less than that of the atom, or of which the atom is composed; small quantum particle

In the physical sciences, subatomic particles are smaller than atoms. They can be composite particles, such as the neutron and proton; or elementary particles, which according to the standard model are not made of other particles. Particle physics and nuclear physics study these particles and how they interact. The concept of a subatomic particle was refined when experiments showed that light could behave like a stream of particles as well as exhibiting wave-like properties. This led to the concept of wave–particle duality to reflect that quantum-scale particles behave like both particles and waves. Another concept, the uncertainty principle, states that some of their properties taken together, such as their simultaneous position and momentum, cannot be measured exactly. The wave–particle duality has been shown to apply not only to photons but to more massive particles as well.

In physics, a unified field theory (UFT) is a type of field theory that allows all that is usually thought of as fundamental forces and elementary particles to be written in terms of a pair of physical and virtual fields. According to the modern discoveries in physics, forces are not transmitted directly between interacting objects, but instead are described and interrupted by intermediary entities called fields.

Modern physics Physics theories developed post-1900

Modern physics is an effort to understand the underlying processes of the interactions with matter utilizing the tools of science and engineering. In general, the term is used to refer to any branch of physics either developed in the early 20th century and onwards, or branches greatly influenced by early 20th century physics.

The timeline of particle physics lists the sequence of particle physics theories and discoveries in chronological order. The most modern developments follow the scientific development of the discipline of particle physics.

The history of quantum mechanics is a fundamental part of the history of modern physics. Quantum mechanics' history, as it interlaces with the history of quantum chemistry, began essentially with a number of different scientific discoveries: the 1838 discovery of cathode rays by Michael Faraday; the 1859–60 winter statement of the black-body radiation problem by Gustav Kirchhoff; the 1877 suggestion by Ludwig Boltzmann that the energy states of a physical system could be discrete; the discovery of the photoelectric effect by Heinrich Hertz in 1887; and the 1900 quantum hypothesis by Max Planck that any energy-radiating atomic system can theoretically be divided into a number of discrete "energy elements" ε (epsilon) such that each of these energy elements is proportional to the frequency ν with which each of them individually radiate energy, as defined by the following formula:

In quantum mechanics, a boson is a particle that follows Bose–Einstein statistics. Bosons make up one of two classes of particles, the other being fermions. The name boson was coined by Paul Dirac to commemorate the contribution of Satyendra Nath Bose, an Indian physicist and professor of physics at University of Calcutta and at University of Dhaka in developing, with Albert Einstein, Bose–Einstein statistics—which theorizes the characteristics of elementary particles.

Branches of physics sub-field of study of physics

Physics deals with the combination of matter and energy. It also deals with a wide variety of systems, about which theories have been developed that are used by physicists. In general, theories are experimentally tested numerous times before they are accepted as correct as a description of Nature. For instance, the theory of classical mechanics accurately describes the motion of objects, provided they are much larger than atoms and moving at much less than the speed of light. These "central theories" are important tools for research in more specialized topics, and any physicist, regardless of his or her specialization, is expected to be literate in them.

This timeline of quantum mechanics shows the key steps, precursors and contributors to the development of quantum mechanics, quantum field theories and quantum chemistry.

Field (physics) Physical quantities taking values at each point in space and time

In physics, a field is a physical quantity, represented by a number or tensor, that has a value for each point in space-time. For example, on a weather map, the surface temperature is described by assigning a real number to each point on a map; the temperature can be considered at a fixed point in time or over some time interval, to study the dynamics of temperature change. A surface wind map, assigning a vector to each point on a map that describes the wind velocity at that point, would be an example of a 1-dimensional tensor field, i.e. a vector field. Field theories, mathematical descriptions of how field values change in space and time, are ubiquitous in physics. For instance, the electric field is another rank-1 tensor field, and the full description of electrodynamics can be formulated in terms of two interacting vector fields at each point in space-time, or as a single-rank 2-tensor field theory.

The Einstein–Maxwell–Dirac equations (EMD) are a classical field theory defined in the setting of general relativity. They are interesting both as a classical PDE system in mathematical relativity, and as a starting point for some work in quantum field theory.

History of subatomic physics

The idea that matter consists of smaller particles and that there exists a limited number of sorts of primary, smallest particles in nature has existed in natural philosophy at least since the 6th century BC. Such ideas gained physical credibility beginning in the 19th century, but the concept of "elementary particle" underwent some changes in its meaning: notably, modern physics no longer deems elementary particles indestructible. Even elementary particles can decay or collide destructively; they can cease to exist and create (other) particles in result.

References

  1. American Heritage Dictionary (January 2005). The American Heritage Science Dictionary. Houghton Mifflin Harcourt. p. 428. ISBN   978-0-618-45504-1.
  2. John L. Heilbron (14 February 2003). The Oxford Companion to the History of Modern Science. Oxford University Press. p. 235. ISBN   978-0-19-974376-6.
  3. Rafelski, Johann (2020). "Discovery of Quark-Gluon Plasma: Strangeness Diaries". The European Physical Journal Special Topics. 229 (1): 1–140. doi:10.1140/epjst/e2019-900263-x. ISSN   1951-6355.
  4. "New State of Matter created at CERN". CERN. Retrieved 2020-05-22.