Torsion conjecture

Last updated

In algebraic geometry and number theory, the torsion conjecture or uniform boundedness conjecture for torsion points for abelian varieties states that the order of the torsion group of an abelian variety over a number field can be bounded in terms of the dimension of the variety and the number field. A stronger version of the conjecture is that the torsion is bounded in terms of the dimension of the variety and the degree of the number field. The torsion conjecture has been completely resolved in the case of elliptic curves.

Contents

Elliptic curves

Ogg's conjecture
Field Number theory
Conjectured by Beppo Levi
Conjectured in1908
First proof by Barry Mazur
First proof in1977–1978

From 1906 to 1911, Beppo Levi published a series of papers investigating the possible finite orders of points on elliptic curves over the rationals. [1] He showed that there are infinitely many elliptic curves over the rationals with the following torsion groups:

At the 1908 International Mathematical Congress in Rome, Levi conjectured that this is a complete list of torsion groups for elliptic curves over the rationals. [1] The torsion conjecture for elliptic curves over the rationals was independently reformulated by TrygveNagell  ( 1952 ) and again by AndrewOgg  ( 1971 ), with the conjecture becoming commonly known as Ogg's conjecture. [1]

AndrewOgg  ( 1971 ) drew the connection between the torsion conjecture for elliptic curves over the rationals and the theory of classical modular curves. [1] In the early 1970s, the work of Gérard Ligozat, Daniel Kubert, Barry Mazur, and John Tate showed that several small values of n do not occur as orders of torsion points on elliptic curves over the rationals. [1] BarryMazur  ( 1977 , 1978 ) proved the full torsion conjecture for elliptic curves over the rationals. His techniques were generalized by Kamienny (1992) and Kamienny & Mazur (1995), who obtained uniform boundedness for quadratic fields and number fields of degree at most 8 respectively. Finally, LoïcMerel  ( 1996 ) proved the conjecture for elliptic curves over any number field. [1]

An effective bound for the size of the torsion group in terms of the degree of the number field was given by Parent (1999). A complete list of possible torsion groups has also been given for elliptic curves over quadratic number fields. There are substantial partial results for quartic and quintic number fields ( Sutherland 2012 ).

See also

Related Research Articles

<span class="mw-page-title-main">Faltings's theorem</span> Curves of genus > 1 over the rationals have only finitely many rational points

Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell, and known as the Mordell conjecture until its 1983 proof by Gerd Faltings. The conjecture was later generalized by replacing by any number field.

The modularity theorem states that elliptic curves over the field of rational numbers are related to modular forms. Andrew Wiles proved the modularity theorem for semistable elliptic curves, which was enough to imply Fermat's Last Theorem. Later, a series of papers by Wiles's former students Brian Conrad, Fred Diamond and Richard Taylor, culminating in a joint paper with Christophe Breuil, extended Wiles's techniques to prove the full modularity theorem in 2001.

In number theory, Iwasawa theory is the study of objects of arithmetic interest over infinite towers of number fields. It began as a Galois module theory of ideal class groups, initiated by Kenkichi Iwasawa (1959), as part of the theory of cyclotomic fields. In the early 1970s, Barry Mazur considered generalizations of Iwasawa theory to abelian varieties. More recently, Ralph Greenberg has proposed an Iwasawa theory for motives.

In mathematics, the Birch and Swinnerton-Dyer conjecture describes the set of rational solutions to equations defining an elliptic curve. It is an open problem in the field of number theory and is widely recognized as one of the most challenging mathematical problems. It is named after mathematicians Bryan John Birch and Peter Swinnerton-Dyer, who developed the conjecture during the first half of the 1960s with the help of machine computation. As of 2023, only special cases of the conjecture have been proven.

Ribet's theorem is part of number theory. It concerns properties of Galois representations associated with modular forms. It was proposed by Jean-Pierre Serre and proven by Ken Ribet. The proof was a significant step towards the proof of Fermat's Last Theorem (FLT). As shown by Serre and Ribet, the Taniyama–Shimura conjecture and the epsilon conjecture together imply that FLT is true.

<span class="mw-page-title-main">Don Zagier</span> American mathematician

Don Bernard Zagier is an American-German mathematician whose main area of work is number theory. He is currently one of the directors of the Max Planck Institute for Mathematics in Bonn, Germany. He was a professor at the Collège de France in Paris from 2006 to 2014. Since October 2014, he is also a Distinguished Staff Associate at the International Centre for Theoretical Physics (ICTP).

<span class="mw-page-title-main">Arithmetic geometry</span> Branch of algebraic geometry focused on problems in number theory

In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties.

In mathematics, a Heegner point is a point on a modular curve that is the image of a quadratic imaginary point of the upper half-plane. They were defined by Bryan Birch and named after Kurt Heegner, who used similar ideas to prove Gauss's conjecture on imaginary quadratic fields of class number one.

<span class="mw-page-title-main">Beppo Levi</span> Italian mathematician

Beppo Levi was an Italian mathematician. He published high-level academic articles and books, not only on mathematics, but also on physics, history, philosophy, and pedagogy. Levi was a member of the Bologna Academy of Sciences and of the Accademia dei Lincei.

In mathematics, the main conjecture of Iwasawa theory is a deep relationship between p-adic L-functions and ideal class groups of cyclotomic fields, proved by Kenkichi Iwasawa for primes satisfying the Kummer–Vandiver conjecture and proved for all primes by Mazur and Wiles (1984). The Herbrand–Ribet theorem and the Gras conjecture are both easy consequences of the main conjecture. There are several generalizations of the main conjecture, to totally real fields, CM fields, elliptic curves, and so on.

In algebraic number theory, a supersingular prime for a given elliptic curve is a prime number with a certain relationship to that curve. If the curve E is defined over the rational numbers, then a prime p is supersingular for E if the reduction of E modulo p is a supersingular elliptic curve over the residue field Fp.

<span class="mw-page-title-main">Barry Mazur</span> American mathematician

Barry Charles Mazur is an American mathematician and the Gerhard Gade University Professor at Harvard University. His contributions to mathematics include his contributions to Wiles's proof of Fermat's Last Theorem in number theory, Mazur's torsion theorem in arithmetic geometry, the Mazur swindle in geometric topology, and the Mazur manifold in differential topology.

In mathematics, the Mordell–Weil theorem states that for an abelian variety over a number field , the group of K-rational points of is a finitely-generated abelian group, called the Mordell–Weil group. The case with an elliptic curve and the field of rational numbers is Mordell's theorem, answering a question apparently posed by Henri Poincaré around 1901; it was proved by Louis Mordell in 1922. It is a foundational theorem of Diophantine geometry and the arithmetic of abelian varieties.

Trygve Nagell or Trygve Nagel was a Norwegian mathematician, known for his works on Diophantine equations in number theory.

<span class="mw-page-title-main">Robert F. Coleman</span> American mathematician

Robert Frederick Coleman was an American mathematician, and professor at the University of California, Berkeley.

<span class="mw-page-title-main">Ken Ribet</span> American mathematician

Kenneth Alan Ribet is an American mathematician working in algebraic number theory and algebraic geometry. He is known for the Herbrand–Ribet theorem and Ribet's theorem, which were key ingredients in the proof of Fermat's Last Theorem, as well as for his service as President of the American Mathematical Society from 2017 to 2019. He is currently a professor of mathematics at the University of California, Berkeley.

In mathematics, the Fontaine–Mazur conjectures are some conjectures introduced by Fontaine and Mazur (1995) about when p-adic representations of Galois groups of number fields can be constructed from representations on étale cohomology groups of a varieties. Some cases of this conjecture in dimension 2 were already proved by Dieulefait (2004).

In mathematics, the conductor of an elliptic curve over the field of rational numbers, or more generally a local or global field, is an integral ideal analogous to the Artin conductor of a Galois representation. It is given as a product of prime ideals, together with associated exponents, which encode the ramification in the field extensions generated by the points of finite order in the group law of the elliptic curve. The primes involved in the conductor are precisely the primes of bad reduction of the curve: this is the Néron–Ogg–Shafarevich criterion.

<span class="mw-page-title-main">Siegel modular variety</span> Algebraic variety that is a moduli space for principally polarized abelian varieties

In mathematics, a Siegel modular variety or Siegel moduli space is an algebraic variety that parametrizes certain types of abelian varieties of a fixed dimension. More precisely, Siegel modular varieties are the moduli spaces of principally polarized abelian varieties of a fixed dimension. They are named after Carl Ludwig Siegel, the 20th-century German number theorist who introduced the varieties in 1943.

<span class="mw-page-title-main">Eric Urban</span>

Eric Jean-Paul Urban is a professor of mathematics at Columbia University working in number theory and automorphic forms, particularly Iwasawa theory.

References

Bibliography