Triafulvalene

Last updated
Triafulvalene
Triafulvalene.png
Names
Preferred IUPAC name
[1,1′-Bi(cyclopropylidene)]-2,2′-diene
Other names
1,1′-Bi(cycloprop-2-en-1-ylidene)
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C6H4/c1-2-5(1)6-3-4-6/h1-4H
    Key: MRCIUZQRSIHAMG-UHFFFAOYSA-N
  • C=1C(C=1)=C2C=C2
Properties
C6H4
Molar mass 76.098 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Triafulvalene or cyclopropenylidenecyclopropene is a fulvalene hydrocarbon with chemical formula C6H4, composed of two linked cyclopropene rings. Triafulvalene has never been isolated, [1] since it can decompose via an isodesmic reaction. [2] However, this molecule is of theoretical significance for theoretical organic chemists, [3] [ why? ] and its structure, stability, and spectral properties are well-studied.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Chemistry</span> Scientific discipline

Chemistry is the scientific study of the properties and behavior of matter. It is a natural science that covers the elements that make up matter to the compounds made of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during a reaction with other substances. Chemistry also addresses the nature of chemical bonds in chemical compounds.

<span class="mw-page-title-main">August Kekulé</span> German organic chemist (1829–1896)

Friedrich August Kekulé, later Friedrich August Kekule von Stradonitz, was a German organic chemist. From the 1850s until his death, Kekulé was one of the most prominent chemists in Europe, especially in theoretical chemistry. He was the principal founder of the theory of chemical structure and in particular the Kekulé structure of benzene.

<span class="mw-page-title-main">Inorganic chemistry</span> Field of chemistry

Inorganic chemistry deals with synthesis and behavior of inorganic and organometallic compounds. This field covers chemical compounds that are not carbon-based, which are the subjects of organic chemistry. The distinction between the two disciplines is far from absolute, as there is much overlap in the subdiscipline of organometallic chemistry. It has applications in every aspect of the chemical industry, including catalysis, materials science, pigments, surfactants, coatings, medications, fuels, and agriculture.

<span class="mw-page-title-main">Organic chemistry</span> Subdiscipline of chemistry, with especial focus on carbon compounds

Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms. Study of structure determines their structural formula. Study of properties includes physical and chemical properties, and evaluation of chemical reactivity to understand their behavior. The study of organic reactions includes the chemical synthesis of natural products, drugs, and polymers, and study of individual organic molecules in the laboratory and via theoretical study.

In chemistry, a zwitterion, also called an inner salt or dipolar ion, is a molecule that contains an equal number of positively- and negatively-charged functional groups. With amino acids, for example, in solution a chemical equilibrium will be established between the "parent" molecule and the zwitterion.

<span class="mw-page-title-main">Robert Burns Woodward</span> American chemist (1917–1979)

Robert Burns Woodward was an American organic chemist. He is considered by many to be the most preeminent synthetic organic chemist of the twentieth century, having made many key contributions to the subject, especially in the synthesis of complex natural products and the determination of their molecular structure. He also worked closely with Roald Hoffmann on theoretical studies of chemical reactions. He was awarded the Nobel Prize in Chemistry in 1965.

<span class="mw-page-title-main">Annulene</span>

Annulenes are monocyclic hydrocarbons that contain the maximum number of non-cumulated or conjugated double bonds. They have the general formula CnHn or CnHn+1. The IUPAC naming conventions are that annulenes with 7 or more carbon atoms are named as [n]annulene, where n is the number of carbon atoms in their ring, though sometimes the smaller annulenes are referred to using the same notation, and benzene is sometimes referred to simply as annulene.

3-Methylenecyclopropene, also called methylenecyclopropene or triafulvene, is a hydrocarbon with chemical formula C4H4. It is a colourless gas that polymerizes readily as a liquid or in solution but is stable as a gas. This highly strained and reactive molecule was synthesized and characterized for the first time in 1984, and has been the subject of considerable experimental and theoretical interest. It is an example of a cross-conjugated alkene, being composed of cyclopropene with an exocyclic double bond attached.

Antiaromaticity is a chemical property of a cyclic molecule with a π electron system that has higher energy, i.e., it is less stable due to the presence of 4n delocalised electrons in it, as opposed to aromaticity. Unlike aromatic compounds, which follow Hückel's rule and are highly stable, antiaromatic compounds are highly unstable and highly reactive. To avoid the instability of antiaromaticity, molecules may change shape, becoming non-planar and therefore breaking some of the π interactions. In contrast to the diamagnetic ring current present in aromatic compounds, antiaromatic compounds have a paramagnetic ring current, which can be observed by NMR spectroscopy.

<span class="mw-page-title-main">Tetrahedral molecular geometry</span> Central atom with four substituents located at the corners of a tetrahedron

In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron. The bond angles are cos−1(−13) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane as well as its heavier analogues. Methane and other perfectly symmetrical tetrahedral molecules belong to point group Td, but most tetrahedral molecules have lower symmetry. Tetrahedral molecules can be chiral.

<span class="mw-page-title-main">Titanocene dichloride</span> Chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

<span class="mw-page-title-main">Homoaromaticity</span> Organic molecular structure

Homoaromaticity, in organic chemistry, refers to a special case of aromaticity in which conjugation is interrupted by a single sp3 hybridized carbon atom. Although this sp3 center disrupts the continuous overlap of p-orbitals, traditionally thought to be a requirement for aromaticity, considerable thermodynamic stability and many of the spectroscopic, magnetic, and chemical properties associated with aromatic compounds are still observed for such compounds. This formal discontinuity is apparently bridged by p-orbital overlap, maintaining a contiguous cycle of π electrons that is responsible for this preserved chemical stability.

<span class="mw-page-title-main">Frank Westheimer</span> American chemist

Frank Henry Westheimer NAS ForMemRS APS was an American chemist. He taught at the University of Chicago from 1936 to 1954, and at Harvard University from 1953 to 1983, becoming the Morris Loeb Professor of Chemistry in 1960, and Professor Emeritus in 1983. The Westheimer medal was established in his honor in 2002.

<span class="mw-page-title-main">Fulvalene</span> Chemical compound

Fulvalene (bicyclopentadienylidene) is the member of the fulvalene family with the molecular formula C10H8. It is of theoretical interest as one of the simplest non-benzenoid conjugated hydrocarbons. Fulvalene is an unstable isomer of the more common benzenoid aromatic compounds naphthalene and azulene. Fulvalene consists of two 5-membered rings, each with two double bonds, joined by yet a fifth double bond. It has D2h symmetry.

<span class="mw-page-title-main">Organotitanium chemistry</span>

Organotitanium chemistry is the science of organotitanium compounds describing their physical properties, synthesis, and reactions. Organotitanium compounds in organometallic chemistry contain carbon-titanium chemical bonds. They are reagents in organic chemistry and are involved in major industrial processes.

Physical organic chemistry, a term coined by Louis Hammett in 1940, refers to a discipline of organic chemistry that focuses on the relationship between chemical structures and reactivity, in particular, applying experimental tools of physical chemistry to the study of organic molecules. Specific focal points of study include the rates of organic reactions, the relative chemical stabilities of the starting materials, reactive intermediates, transition states, and products of chemical reactions, and non-covalent aspects of solvation and molecular interactions that influence chemical reactivity. Such studies provide theoretical and practical frameworks to understand how changes in structure in solution or solid-state contexts impact reaction mechanism and rate for each organic reaction of interest.

C<sub>70</sub> fullerene Chemical compound

C70 fullerene is the fullerene molecule consisting of 70 carbon atoms. It is a cage-like fused-ring structure which resembles a rugby ball, made of 25 hexagons and 12 pentagons, with a carbon atom at the vertices of each polygon and a bond along each polygon edge. A related fullerene molecule, named buckminsterfullerene (C60 fullerene), consists of 60 carbon atoms.

<span class="mw-page-title-main">Sesquifulvalene</span> Chemical compound

Sesquifulvalene or Pentaheptafulvalene is a hydrocarbon in the fulvalene class with chemical formula C12H10. It is composed of linked cyclopentadiene and cycloheptatriene rings.

<span class="mw-page-title-main">Fulvenes</span>

Fulvenes are the class of hydrocarbon obtained by formally cross-conjugating one ring and methylidene through a common exocyclic double bond.

<span class="mw-page-title-main">Bis(fulvalene)diiron</span> Chemical compound

Bis(fulvalene)diiron is the organoiron complex with the formula (C5H4-C5H4)2Fe2. Structurally, the molecule consists of two ferrous centers sandwiched between fulvalene dianions. The compound is an orange solid with lower solubility in benzene than ferrocene. Its structure has been verified by X-ray crystallography. The compound has attracted some interest for its redox properties.

References

  1. Carey, Francis A.; Richard J. Sundberg (2007). Advanced Organic Chemistry: Part A: Structure and Mechanisms. Springer Science & Business Media. pp. 755–787. ISBN   978-0-387448-99-2.
  2. Neuenschwander, Markus (1986), "Synthetic and NMR spectroscopic investigations of fulvenes and fulvalenes" (PDF), Pure Appl. Chem., 58 (1): 55–66, doi:10.1351/pac198658010055, S2CID   55312999
  3. Scott, Anthony P.; Agranat, Israel; Biedermann, P. Ulrich; Riggs, Noel V.; Radom, Leo (1997). "Fulvalenes, Fulvenes, and Related Molecules: An ab Initio Study". The Journal of Organic Chemistry. 62 (7): 2026–2038. doi:10.1021/jo962407l. ISSN   0022-3263. PMID   11671506.